Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_3_a2, author = {G. Gill and P. Straka}, title = {A {Semi-Markov} {Algorithm} for {Continuous} {Time} {Random} {Walk} {Limit} {Distributions}}, journal = {Mathematical modelling of natural phenomena}, pages = {34--50}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2016}, doi = {10.1051/mmnp/201611303}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611303/} }
TY - JOUR AU - G. Gill AU - P. Straka TI - A Semi-Markov Algorithm for Continuous Time Random Walk Limit Distributions JO - Mathematical modelling of natural phenomena PY - 2016 SP - 34 EP - 50 VL - 11 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611303/ DO - 10.1051/mmnp/201611303 LA - en ID - MMNP_2016_11_3_a2 ER -
%0 Journal Article %A G. Gill %A P. Straka %T A Semi-Markov Algorithm for Continuous Time Random Walk Limit Distributions %J Mathematical modelling of natural phenomena %D 2016 %P 34-50 %V 11 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611303/ %R 10.1051/mmnp/201611303 %G en %F MMNP_2016_11_3_a2
G. Gill; P. Straka. A Semi-Markov Algorithm for Continuous Time Random Walk Limit Distributions. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 34-50. doi : 10.1051/mmnp/201611303. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611303/
[1] Phys. Rep. 1 77 2000
,[2] Biophys. J. 1652 1660 2013
, , , , , ,[3] Rev. Geophys. RG2003 2006
, , ,[4] Complex Netw. Econ. Interact. 3 16 2005
[5] Neuron 635 48 2006
, , ,[6] Biophys. J. 2960 71 2005
,[7] Bruce I Henry, Trevor AM Langlands, Peter Straka. An introduction to fractional diffusion. In R L. Dewar and F Detering, editors, Complex Phys. Biophys. Econophysical Syst. World Sci. Lect. Notes Complex Syst., volume 9 of World Scientific Lecture Notes in Complex Systems, pages 37–90, Singapore, 2010. World Scientific.
[8] Phys. Rev. Lett. 170602 2010
, ,[9] J. Comput. Phys. 719 736 2005
,[10] Vicenc Mendez, Sergei Fedotov, Werner Horsthemke. Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer Berlin/Heidelberg, 1st edition, 2010. jun
[11] Math. Model. Nat. Phenom. 17 27 2013
, ,[12] J. Theor. Biol. 71 83 2015
,[13] Phys. Rev. E 062127 2015
,[14] Diffusion and relaxation controlled by tempered α-stable processes Phys. Rev. E 6 11 2008
, ,[15] Water Resour. Res. 2003
, , ,[16] Stoch. Process. their Appl. 324 336 2011
,[17] Comput. Math. with Appl. 3021 3036 2012
, , ,[18] Stoch. Process. their Appl. 4021 4038 2015
, , ,[19] Phys. Rev. E 1 7 2010
, , , ,[20] Ann. Probab. 1699 1723 2014
,[21] Ofer Busani. Finite Dimensional Fokker-Planck Equations for Continuous Time Random Walks. arXiv 1510.01150, oct 2015.
[22] J. Stat. Phys. 878 886 2012
,[23] Europhys. Lett. 10002 2007
,[24] Mark M. Meerschaert, Alla Sikorskii. Stochastic models for fractional calculus. De Gruyter, Berlin/Boston, 2011.
[25] D. Applebaum. Lévy Processes and Stochastic Calculus, volume 116 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2nd edition, may 2009.
[26] Jean Bertoin. Subordinators: examples and applications, volume 1717 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.
[27] Meerschaert, Peter Straka. Inverse Stable Subordinators Math. Model. Nat. Phenom. 1 16 2013
[28] Phys. Rev. E 1 6 2008
[29] SIAM J. Appl. Math. 1445 1468 2015
, , , ,[30] Boris Baeumer, Peter Straka. Fokker–Planck and Kolmogorov Backward Equations for Continuous Time Random Walk scaling limits. Proc. Amer. Math. Soc., arXiv 1501.00533, jan 2016.
[31] J. Stat. Phys. 1241 1250 2014
, ,[32] Z. Wahrsch. Verw. Geb. 167 193 1972
[33] Stoch. Process. Appl. 677 707 2007
[34] Peter Straka. Continuous Time Random Walk Limit Processes: Stochastic Models for Anomalous Diffusion, available at http://unsworks.unsw.edu.au/fapi/datastream/unsworks:9800/SOURCE02. PhD thesis, University of New South Wales, 2011.
[35] Phys. Rev. E 1 6 2010
,[36] J. Chem. Phys. 6167 2003
,[37] Ofer Busani. Aging uncoupled continuous time random walk limits. arXiv, 1402.3965, feb 2015.
[38] J. Comput. Phys. 508 534 2016
, , , , ,[39] Jean Jacod and Albert N Shiryaev. Limit Theorems for Stochastic Processes. Springer, dec 2002.
[40] P. Billingsley. Convergence of Probability Measures. Wiley Series in Probability and Statistics. John Wiley Sons Inc, New York, second edition, jan 1968.
[41] Am. Math. Mon. 419 1960
Cité par Sources :