Voir la notice de l'article provenant de la source EDP Sciences
T. Sandev 1, 2 ; A. Iomin 3 ; H. Kantz 1 ; R. Metzler 4, 5 ; A. Chechkin 1, 6, 7
@article{MMNP_2016_11_3_a1, author = {T. Sandev and A. Iomin and H. Kantz and R. Metzler and A. Chechkin}, title = {Comb {Model} with {Slow} and {Ultraslow} {Diffusion}}, journal = {Mathematical modelling of natural phenomena}, pages = {18--33}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2016}, doi = {10.1051/mmnp/201611302}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611302/} }
TY - JOUR AU - T. Sandev AU - A. Iomin AU - H. Kantz AU - R. Metzler AU - A. Chechkin TI - Comb Model with Slow and Ultraslow Diffusion JO - Mathematical modelling of natural phenomena PY - 2016 SP - 18 EP - 33 VL - 11 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611302/ DO - 10.1051/mmnp/201611302 LA - en ID - MMNP_2016_11_3_a1 ER -
%0 Journal Article %A T. Sandev %A A. Iomin %A H. Kantz %A R. Metzler %A A. Chechkin %T Comb Model with Slow and Ultraslow Diffusion %J Mathematical modelling of natural phenomena %D 2016 %P 18-33 %V 11 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611302/ %R 10.1051/mmnp/201611302 %G en %F MMNP_2016_11_3_a1
T. Sandev; A. Iomin; H. Kantz; R. Metzler; A. Chechkin. Comb Model with Slow and Ultraslow Diffusion. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 18-33. doi : 10.1051/mmnp/201611302. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611302/
[1] Phys. Rep. 1990 127 293
,[2] Phys. Rep. 2000 1 77 A: Math Gen. 2004 R161 R208
,[3] Phys. Chem. Chem. Phys. 2014 24128 24164
, , ,[4] Phys. Rev. B 1975 2455
,[5] Phys. Rev. Lett. 2011 048103
, , , , , , ,[6] Phys. Rev. Lett. 2006 098102
,[7] Phys. Rev. Lett. 2009 038102
,[8] New J. Phys. 2013 045011
, , ,[9] Sci. Rep. 2015 11690
, , , , ,[10] Phys. Rev. Lett. 2000 5655
, ,[11] New J. Phys. 2014 092002
, ,[12] Biophys. J. 2014 2579 2591
,[13] J. Chem. Phys. 2011 141105
, ,[14] Phys. Rev. Lett. 2012 188103
, , ,[15] J. Phys. A: Math. Gen. 1984 2995
,[16] Physica A 1986 474 482
,[17] Phys. Rev. A 1987 1403 1408
, ,[18] J. Phys. A: Math. Gen. 1989 2867
, ,[19] Sov. Phys. JETP 1991 161 165
,[20] J. Exper. Theor. Phys. 1998 700 713
,[21] Physica A 2000 304 314
[22] Phys. Rev. Lett. 2004 120603
,[23] Phys. Rev. E 2005 061101
,[24] Brazilian J. Phys. 2009 483 487
, , , ,[25] Phys. Rev. E 2009 041128
,[26] I. Podlubny. Fractional Differential Equations. Acad. Press, San Diego etc., 1999.
[27] Chaos Solitons Fractals 2013 46 51
,[28] Phys. Rev. E 2013 012706
,[29] Phys. Rev. E 2011 052106
[30] Phys. Rev. E 2012 032101
[31] Phys. Rev. E 2013 012121
, , , ,[32] Colloids and Surfaces A: Physicochem. Eng. Aspects 2007 111 116
, , , , ,[33] J. Exper. Theor. Phys. 2015 860 870
,[34] IEEE Electron. Lett. 2006 785 787
, ,[35] M. Thiriet. Tissue Functioning and Remodeling in the Circulatory and Ventilatory Systems. Springer, New York, 2013.
[36] D. Ben-Avraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered System. Cambridge University Press, Cambridge, 2000.
[37] Phys. Rev. E 2013 052126
,[38] J. Exper. Theor. Phys 2008 999 1005
, , ,[39] New J. Phys. 2014 093050
, , , ,[40] Phys. Rev. E 2015 032108
, ,[41] Phys. Rev. Lett. 2008 058101
, , ,[42] Phys. Rev. Lett. 2013 020602
, ,[43] Phys. Rev. E 2010 010101(R)
, ,[44] Phys. Chem. Chem. Phys. 2015 30134
, ,[45] Fract. Calc. Appl. Anal. 2015 1006 1038
, , ,[46] Phys. Rev. E 2009 031112
, ,[47] Phys. Rev. E 2001 046118
[48] Math. Model. Nat. Phenom. 2013 1 16
,[49] Integr. Equ. Oper. Theory 2011 583 600
[50] Phys. Rev. E 2002 046129
, ,[51] EPL 2003 326
, ,[52] A. Chechkin, I.M. Sokolov, J. Klafter. Natural and Modified Forms of Distributed Order Fractional Diffusion Equations, in Fractional Dynamics: Recent Advances, Eds. J. Klafter, S.C. Lim and R. Metzler. World Scientific Publishing Company, Singapore, 2011.
[53] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelesticity: An introduction to Mathematical Models. Imperial College Press, London, 2010.
[54] Phys. Lett. A 2014 1 9
,[55] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi. Higher Transcedential Functions. Vol. 3, McGraw-Hill, New York, 1955.
[56] Theor. Probab. Appl. 1982 256 268
[57] J. Phys. A: Math. Theor. 2014 492002
, , , ,[58] Phys. Chem. Chem. Phys. 2015 21791 21798
, , ,[59] New J. Phys. 2014 113050
, , , , ,[60] Phys. Rev. Lett. 2000 5998
,[61] Phys. Chem. Chem. Phys. 2013 20220 20235
,[62] Phys. Rev. Lett. 2013 208301
, , ,[63] New J. Phys. 2015 063038
, , ,[64] A.M. Mathai, R.K. Saxena, H.J. Haubold. The H-function: Theory and Applications. New York Dordrecht Heidelberg London, Springer, 2010.
[65] R. Schilling, R. Song, Z. Vondracek. Bernstein Functions. De Gruyter, Berlin, 2010.
[66] C. Berg, G. Forst. Potential Theory on Locally Compact Abelian Groups. Berlin, Springer, 1975.
[67] Yokohama Math. J. 1971 7 15
[68] Astrophys. Space Sci. 2004 299 310
, ,[69] J. Math. Phys. 2014 023301
, ,[70] SIAM J. Numer. Anal. 2008 69 88
,[71] Nonlin. Dyn. 2010 339 349
, , ,[72] W. Feller. An Introduction to Probability Theory and Its Applications. Vol. II, Wiley, New York, 1968.
Cité par Sources :