Comb Model with Slow and Ultraslow Diffusion
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 18-33.

Voir la notice de l'article provenant de la source EDP Sciences

We consider a generalized diffusion equation in two dimensions for modeling diffusion on a comb-like structures. We analyze the probability distribution functions and we derive the mean squared displacement in x and y directions. Different forms of the memory kernels (Dirac delta, power-law, and distributed order) are considered. It is shown that anomalous diffusion may occur along both x and y directions. Ultraslow diffusion and some more general diffusive processes are observed as well. We give the corresponding continuous time random walk model for the considered two dimensional diffusion-like equation on a comb, and we derive the probability distribution functions which subordinate the process governed by this equation to the Wiener process.
DOI : 10.1051/mmnp/201611302

T. Sandev 1, 2 ; A. Iomin 3 ; H. Kantz 1 ; R. Metzler 4, 5 ; A. Chechkin 1, 6, 7

1 Max Planck Institute for the Physics of Complex Systems Nöthnitzer Strasse 38, 01187 Dresden, Germany
2 Radiation Safety Directorate, Partizanski odredi 143, P.O. Box 22, 1020 Skopje, Macedonia
3 Department of Physics, Technion, Haifa 32000, Israel
4 Institute for Physics and Astronomy, University of Potsdam, D-14776 Potsdam-Golm, Germany
5 Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
6 Akhiezer Institute for Theoretical Physics, Kharkov 61108, Ukraine
7 Department of Physics and Astronomy, University of Padova, “Galileo Galilei” - DFA 35131 Padova, Italy
@article{MMNP_2016_11_3_a1,
     author = {T. Sandev and A. Iomin and H. Kantz and R. Metzler and A. Chechkin},
     title = {Comb {Model} with {Slow} and {Ultraslow} {Diffusion}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {18--33},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2016},
     doi = {10.1051/mmnp/201611302},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611302/}
}
TY  - JOUR
AU  - T. Sandev
AU  - A. Iomin
AU  - H. Kantz
AU  - R. Metzler
AU  - A. Chechkin
TI  - Comb Model with Slow and Ultraslow Diffusion
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 18
EP  - 33
VL  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611302/
DO  - 10.1051/mmnp/201611302
LA  - en
ID  - MMNP_2016_11_3_a1
ER  - 
%0 Journal Article
%A T. Sandev
%A A. Iomin
%A H. Kantz
%A R. Metzler
%A A. Chechkin
%T Comb Model with Slow and Ultraslow Diffusion
%J Mathematical modelling of natural phenomena
%D 2016
%P 18-33
%V 11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611302/
%R 10.1051/mmnp/201611302
%G en
%F MMNP_2016_11_3_a1
T. Sandev; A. Iomin; H. Kantz; R. Metzler; A. Chechkin. Comb Model with Slow and Ultraslow Diffusion. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 18-33. doi : 10.1051/mmnp/201611302. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611302/

[1] J.-P. Bouchaud, A. Georges Phys. Rep. 1990 127 293

[2] R. Metzler, J. Klafter Phys. Rep. 2000 1 77 A: Math Gen. 2004 R161 R208

[3] R. Metzler, J.-H. Jeon, A. G. Cherstvy, E. Barkai Phys. Chem. Chem. Phys. 2014 24128 24164

[4] H. Scher, E. W. Montroll Phys. Rev. B 1975 2455

[5] J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, R. Metzler Phys. Rev. Lett. 2011 048103

[6] I. Golding, E. C. Cox Phys. Rev. Lett. 2006 098102

[7] J. Szymanski, M. Weiss Phys. Rev. Lett. 2009 038102

[8] J.-H. Jeon, N. Leijnse, L. B. Oddershede, R. Metzler New J. Phys. 2013 045011

[9] J. F. Reverey, J.-H. Jeon, H. Bao, M. Leippe, R. Metzler, C. Selhuber-Unkel Sci. Rep. 2015 11690

[10] A. Caspi, R. Granek, M. Elbaum Phys. Rev. Lett. 2000 5655

[11] A. Godec, M. Bauer, R. Metzler New J. Phys. 2014 092002

[12] F. Trovato, V. Tozzini Biophys. J. 2014 2579 2591

[13] G. R. Kneller, K. Baczynski, M. Pasenkiewicz-Gierula J. Chem. Phys. 2011 141105

[14] J.-H. Jeon, H. M. Monne, M. Javanainen, R. Metzler Phys. Rev. Lett. 2012 188103

[15] S.R. White, M. Barma J. Phys. A: Math. Gen. 1984 2995

[16] G.H. Weiss, S. Havlin Physica A 1986 474 482

[17] S. Havlin, J.E. Kiefer, G.H. Weiss Phys. Rev. A 1987 1403 1408

[18] O. Matan, S. Havlin, D. Staufler J. Phys. A: Math. Gen. 1989 2867

[19] V.E. Arkhincheev, E.M. Baskin Sov. Phys. JETP 1991 161 165

[20] I.A. Lubashevski, A.A. Zemlyanov J. Exper. Theor. Phys. 1998 700 713

[21] V.E. Arkhincheev Physica A 2000 304 314

[22] E. Baskin, A. Iomin Phys. Rev. Lett. 2004 120603

[23] A. Iomin, E. Baskin Phys. Rev. E 2005 061101

[24] L.R. Da Silva, A.A. Tateishi, M.K. Lenzi, E.K. Lenzi, P.C. Da Silva Brazilian J. Phys. 2009 483 487

[25] O.A. Dvoretskaya, P.S. Kondratenko Phys. Rev. E 2009 041128

[26] I. Podlubny. Fractional Differential Equations. Acad. Press, San Diego etc., 1999.

[27] V. Mendez, A. Iomin Chaos Solitons Fractals 2013 46 51

[28] A. Iomin, V. Mendez Phys. Rev. E 2013 012706

[29] A. Iomin Phys. Rev. E 2011 052106

[30] A. Iomin Phys. Rev. E 2012 032101

[31] E.K. Lenzi, L.R. Da Silva, A.A. Tateishi, M.K. Lenzi, H.V. Ribeiro Phys. Rev. E 2013 012121

[32] D. Shamiryan, M.R. Baklanov, P. Lyons, S. Beckx, W. Boullart, K. Maex Colloids and Surfaces A: Physicochem. Eng. Aspects 2007 111 116

[33] R.T. Sibatov, E.V. Morozova J. Exper. Theor. Phys. 2015 860 870

[34] L.C.Y. Chu, D. Guha, Y.M.M. Antar IEEE Electron. Lett. 2006 785 787

[35] M. Thiriet. Tissue Functioning and Remodeling in the Circulatory and Ventilatory Systems. Springer, New York, 2013.

[36] D. Ben-Avraham, S. Havlin. Diffusion and Reactions in Fractals and Disordered System. Cambridge University Press, Cambridge, 2000.

[37] A. Rebenshtok, E. Barkai Phys. Rev. E 2013 052126

[38] V.Yu. Zaburdaev, P.V. Popov, A.S. Romanov, K.V. Chukbar J. Exper. Theor. Phys 2008 999 1005

[39] H.V. Ribeiro, A.A. Tateishi, L.G.A. Alves, R.S. Zola, E.K. Lenzi New J. Phys. 2014 093050

[40] T. Sandev, A. Iomin, H. Kantz Phys. Rev. E 2015 032108

[41] Y. He, S. Burov, R. Metzler, E. Barkai Phys. Rev. Lett. 2008 058101

[42] J. H. P. Schulz, E. Barkai, R. Metzler Phys. Rev. Lett. 2013 020602

[43] Y. Meroz, I. M. Sokolov, J. Klafter Phys. Rev. E 2010 010101(R)

[44] Y. Mardoukhi, J.-H. Jeon, R. Metzler Phys. Chem. Chem. Phys. 2015 30134

[45] T. Sandev, A. Chechkin, H. Kantz, R. Metzler Fract. Calc. Appl. Anal. 2015 1006 1038

[46] A.V. Chechkin, M. Hofmann, I.M. Sokolov Phys. Rev. E 2009 031112

[47] E. Barkai Phys. Rev. E 2001 046118

[48] M.M. Meerschaert, P. Straka Math. Model. Nat. Phenom. 2013 1 16

[49] A.N. Kochubei Integr. Equ. Oper. Theory 2011 583 600

[50] A.V. Chechkin, R. Gorenflo, I.M. Sokolov Phys. Rev. E 2002 046129

[51] A.V. Chechkin, J. Klafter, I.M. Sokolov EPL 2003 326

[52] A. Chechkin, I.M. Sokolov, J. Klafter. Natural and Modified Forms of Distributed Order Fractional Diffusion Equations, in Fractional Dynamics: Recent Advances, Eds. J. Klafter, S.C. Lim and R. Metzler. World Scientific Publishing Company, Singapore, 2011.

[53] F. Mainardi. Fractional Calculus and Waves in Linear Viscoelesticity: An introduction to Mathematical Models. Imperial College Press, London, 2010.

[54] T. Sandev, Ž. Tomovski Phys. Lett. A 2014 1 9

[55] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi. Higher Transcedential Functions. Vol. 3, McGraw-Hill, New York, 1955.

[56] Y.G. Sinai Theor. Probab. Appl. 1982 256 268

[57] A. Godec, A. V. Chechkin, E. Barkai, H. Kantz, R. Metzler J. Phys. A: Math. Theor. 2014 492002

[58] A. Bodrova, A. V. Chechkin, A. G. Cherstvy, R. Metzler Phys. Chem. Chem. Phys. 2015 21791 21798

[59] L. P. Sanders, M. A. Lomholt, L. Lizana, K. Fogelmark, R. Metzler, T. Ambjörnsson New J. Phys. 2014 113050

[60] J. Dräger, J. Klafter Phys. Rev. Lett. 2000 5998

[61] A. G. Cherstvy, R. Metzler Phys. Chem. Chem. Phys. 2013 20220 20235

[62] M.A. Lomholt, L. Lizana, R. Metzler, T. Ambjörnsson Phys. Rev. Lett. 2013 208301

[63] A. Bodrova, A. V. Chechkin, A. G. Cherstvy, R. Metzler New J. Phys. 2015 063038

[64] A.M. Mathai, R.K. Saxena, H.J. Haubold. The H-function: Theory and Applications. New York Dordrecht Heidelberg London, Springer, 2010.

[65] R. Schilling, R. Song, Z. Vondracek. Bernstein Functions. De Gruyter, Berlin, 2010.

[66] C. Berg, G. Forst. Potential Theory on Locally Compact Abelian Groups. Berlin, Springer, 1975.

[67] T.R. Prabhakar Yokohama Math. J. 1971 7 15

[68] R.K. Saxena, A.M. Mathai, H.J. Haubold Astrophys. Space Sci. 2004 299 310

[69] T. Sandev, R. Metzler, Z. Tomovski J. Math. Phys. 2014 023301

[70] H. Seybold, R. Hilfer SIAM J. Numer. Anal. 2008 69 88

[71] Z.L. Huang, X.L. Jin, C.W. Lim, Y. Wang Nonlin. Dyn. 2010 339 349

[72] W. Feller. An Introduction to Probability Theory and Its Applications. Vol. II, Wiley, New York, 1968.

Cité par Sources :