Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_3_a0, author = {Yu. Luchko}, title = {A {New} {Fractional} {Calculus} {Model} for the {Two-dimensional} {Anomalous} {Diffusion} and its {Analysis}}, journal = {Mathematical modelling of natural phenomena}, pages = {1--17}, publisher = {mathdoc}, volume = {11}, number = {3}, year = {2016}, doi = {10.1051/mmnp/201611301}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611301/} }
TY - JOUR AU - Yu. Luchko TI - A New Fractional Calculus Model for the Two-dimensional Anomalous Diffusion and its Analysis JO - Mathematical modelling of natural phenomena PY - 2016 SP - 1 EP - 17 VL - 11 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611301/ DO - 10.1051/mmnp/201611301 LA - en ID - MMNP_2016_11_3_a0 ER -
%0 Journal Article %A Yu. Luchko %T A New Fractional Calculus Model for the Two-dimensional Anomalous Diffusion and its Analysis %J Mathematical modelling of natural phenomena %D 2016 %P 1-17 %V 11 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611301/ %R 10.1051/mmnp/201611301 %G en %F MMNP_2016_11_3_a0
Yu. Luchko. A New Fractional Calculus Model for the Two-dimensional Anomalous Diffusion and its Analysis. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 1-17. doi : 10.1051/mmnp/201611301. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611301/
[1] Physical Review E 2009 066102
, , ,[2] Communications in Applied and Industrial Mathematics 2014
[3] Eur. Phys. J. Special Topics 2011 119 132
,[4] Fract. Calc. Appl. Anal. 2002 491 518
, ,[5] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin, 2014.
[6] Proc. R. Soc. London. A 2002 429 450
[7] Phys. Rev. E, Rapid Commun. 1995 R848
,[8] J. Non-Equilib. Thermodyn. 1998 166 175
, ,[9] Journal of Statistical Physics 1973 45 50
, ,[10] R. Klages, G. Radons, I.M. Sokolov. Anomalous Transport: Foundations and Applications. Wiley-VCH, 2008.
[11] J. Non-Equilib. Thermodyn. 2003 279 291
, , , ,[12] Axioms 2016
[13] Journal of Computational Physics 2015 40 52
[14] Communications in Applied and Industrial Mathematics 2014
[15] J. Math. Phys. 2013 031505
[16] AIP Conf. Proc. 2012 626 632
[17] Forum der Berliner mathematischen Gesellschaft 2011 53 85
[18] Acta Mathematica Vietnamica 1999 207 233
,[19] Fract. Calc. Appl. Anal. 2013 405 430
,[20] Phys. Rev. Lett. 2008 210601
, ,[21] Fract. Calc. Appl. Anal. 2001 153 192
, ,[22] O.I. Marichev. Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algorithmic Tables. Ellis Horwood, 1983.
[23] Phys. Chem. Chem. Phys. 2014 24128 24164
, , ,[24] J. Phys. A. Math. Gen. 2004 R161 R208
,[25] Physics Reports 2000 1 77
,[26] J. Phys. A: Math. Theor. 2008 285003
,[27] Physica A 2014 29 34
[28] Fract. Calc. Appl. Anal. 2012 117 127
[29] Yu. Povstenko. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhäuser, 2015.
[30] Physica A 2010 214 224
, ,[31] S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, 1993.
[32] J. Math. Phys. 1989 134 144
,[33] Fract. Calc. Appl. Anal. 2015 821 837
[34] Matlab File Exchange, Matlab-Code that calculates the Mittag-Leffler function with desired accuracy, available for download at www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function.
Cité par Sources :