A New Fractional Calculus Model for the Two-dimensional Anomalous Diffusion and its Analysis
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 1-17.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, a special model for the two-dimensional anomalous diffusion is first deduced from the basic continuous time random walk equations in terms of a time- and space-fractional partial differential equation with the Caputo time-fractional derivative of order α/ 2 and the Riesz space-fractional derivative of order α. For α 2, this α-fractional diffusion equation describes the so called Lévy flights that correspond to the continuous time random walk model, where both the mean waiting time and the jump length variance of the diffusing particles are divergent. The fundamental solution to the α-fractional diffusion equation is shown to be a two-dimensional probability density function that can be expressed in explicit form in terms of the Mittag-Leffler function depending on the auxiliary variable |x|/(2√t) as in the case of the fundamental solution to the classical isotropic diffusion equation. Moreover, we show that the entropy production rate associated with the anomalous diffusion process described by the α-fractional diffusion equation is exactly the same as in the case of the classical isotropic diffusion equation. Thus the α-fractional diffusion equation can be considered to be a natural generalization of the classical isotropic diffusion equation that exhibits some characteristics of both anomalous and classical diffusion.
DOI : 10.1051/mmnp/201611301

Yu. Luchko 1

1 Department of Mathematics, Physics, and Chemistry Beuth Technical University of Applied Sciences Berlin Luxemburger Str. 10, 13353 Berlin, Germany
@article{MMNP_2016_11_3_a0,
     author = {Yu. Luchko},
     title = {A {New} {Fractional} {Calculus} {Model} for the {Two-dimensional} {Anomalous} {Diffusion} and its {Analysis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {2016},
     doi = {10.1051/mmnp/201611301},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611301/}
}
TY  - JOUR
AU  - Yu. Luchko
TI  - A New Fractional Calculus Model for the Two-dimensional Anomalous Diffusion and its Analysis
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 1
EP  - 17
VL  - 11
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611301/
DO  - 10.1051/mmnp/201611301
LA  - en
ID  - MMNP_2016_11_3_a0
ER  - 
%0 Journal Article
%A Yu. Luchko
%T A New Fractional Calculus Model for the Two-dimensional Anomalous Diffusion and its Analysis
%J Mathematical modelling of natural phenomena
%D 2016
%P 1-17
%V 11
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611301/
%R 10.1051/mmnp/201611301
%G en
%F MMNP_2016_11_3_a0
Yu. Luchko. A New Fractional Calculus Model for the Two-dimensional Anomalous Diffusion and its Analysis. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 3, pp. 1-17. doi : 10.1051/mmnp/201611301. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611301/

[1] G. Germano, M. Politi, E. Scalas, R.L. Schilling Physical Review E 2009 066102

[2] R. Gorenflo Communications in Applied and Industrial Mathematics 2014

[3] R. Gorenflo, F. Mainardi Eur. Phys. J. Special Topics 2011 119 132

[4] R. Gorenflo, J. Loutchko, Yu. Luchko Fract. Calc. Appl. Anal. 2002 491 518

[5] R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin, 2014.

[6] A. Hanyga Proc. R. Soc. London. A 2002 429 450

[7] R. Hilfer, L. Anton Phys. Rev. E, Rapid Commun. 1995 R848

[8] K.H. Hoffmann, C. Essex, C. Schulzky J. Non-Equilib. Thermodyn. 1998 166 175

[9] M. Kenkre, E.W. Montroll, M.F. Shlesinger Journal of Statistical Physics 1973 45 50

[10] R. Klages, G. Radons, I.M. Sokolov. Anomalous Transport: Foundations and Applications. Wiley-VCH, 2008.

[11] X. Li, C. Essex, M. Davison, K.H. Hoffmann, C. Schulzky J. Non-Equilib. Thermodyn. 2003 279 291

[12] Yu. Luchko Axioms 2016

[13] Yu. Luchko Journal of Computational Physics 2015 40 52

[14] Yu. Luchko Communications in Applied and Industrial Mathematics 2014

[15] Yu. Luchko J. Math. Phys. 2013 031505

[16] Yu. Luchko AIP Conf. Proc. 2012 626 632

[17] Yu. Luchko Forum der Berliner mathematischen Gesellschaft 2011 53 85

[18] Yu. Luchko, R. Gorenflo Acta Mathematica Vietnamica 1999 207 233

[19] Yu. Luchko, V. Kiryakova Fract. Calc. Appl. Anal. 2013 405 430

[20] M. Magdziarz, A. Weron, J. Klafter Phys. Rev. Lett. 2008 210601

[21] F. Mainardi, Yu. Luchko, G. Pagnini Fract. Calc. Appl. Anal. 2001 153 192

[22] O.I. Marichev. Handbook of Integral Transforms of Higher Transcendental Functions. Theory and Algorithmic Tables. Ellis Horwood, 1983.

[23] R. Metzler, J.-H. Jeon, A.G. Cherstvy, E. Barkai Phys. Chem. Chem. Phys. 2014 24128 24164

[24] R. Metzler, J. Klafter J. Phys. A. Math. Gen. 2004 R161 R208

[25] R. Metzler, J. Klafter Physics Reports 2000 1 77

[26] A. Mura, G. Pagnini J. Phys. A: Math. Theor. 2008 285003

[27] G. Pagnini Physica A 2014 29 34

[28] G. Pagnini Fract. Calc. Appl. Anal. 2012 117 127

[29] Yu. Povstenko. Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhäuser, 2015.

[30] J. Prehl, C. Essex, K.H. Hoffmann Physica A 2010 214 224

[31] S.G. Samko, A.A. Kilbas, O.I. Marichev. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, 1993.

[32] W.R. Schneider, W. Wyss J. Math. Phys. 1989 134 144

[33] S. Umarov Fract. Calc. Appl. Anal. 2015 821 837

[34] Matlab File Exchange, Matlab-Code that calculates the Mittag-Leffler function with desired accuracy, available for download at www.mathworks.com/matlabcentral/fileexchange/8738-mittag-leffler-function.

Cité par Sources :