Variable Moving Average Transform Stitching Waves
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 133-144.

Voir la notice de l'article provenant de la source EDP Sciences

A moving average transform in the plane with a variable size and shape window depending on the position and the ’time’ is studied. The main objective is to select the window parameters in such a way that the new transform converges smoothly to the identity transform at the boundary of a prescribed bounded plane region. A new approximation of solitary waves arising from Korteweg-de Vries equation is obtained based on results in the paper. Numerical implementation and examples are included.
DOI : 10.1051/mmnp/201611210

V. Vatchev 1

1 School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley One West University Boulevard, Brownsville, TX 78520, USA
@article{MMNP_2016_11_2_a9,
     author = {V. Vatchev},
     title = {Variable {Moving} {Average} {Transform} {Stitching} {Waves}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {133--144},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.1051/mmnp/201611210},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611210/}
}
TY  - JOUR
AU  - V. Vatchev
TI  - Variable Moving Average Transform Stitching Waves
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 133
EP  - 144
VL  - 11
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611210/
DO  - 10.1051/mmnp/201611210
LA  - en
ID  - MMNP_2016_11_2_a9
ER  - 
%0 Journal Article
%A V. Vatchev
%T Variable Moving Average Transform Stitching Waves
%J Mathematical modelling of natural phenomena
%D 2016
%P 133-144
%V 11
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611210/
%R 10.1051/mmnp/201611210
%G en
%F MMNP_2016_11_2_a9
V. Vatchev. Variable Moving Average Transform Stitching Waves. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 133-144. doi : 10.1051/mmnp/201611210. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611210/

[1] M. Ablowitz, P. Clarkson. Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, Cambridge, U.K., 1991.

[2] C. Boor, K. Höllig, S. Riemenschneider.Box Splines. Applied Mathematical Sciences, 98, 1993.

[3] E. Fuselier, T. Hangelbroek, F. Narcowich, J. Ward, G. Wright SIAM J. Numer. Anal. 2013 2538 2562

[4] W. Hereman, Shallow water waves and solitary waves. Encyclopedia of Complexity and Systems Science, Springer-Verlag, Heibelberg, Germany (2009), 8112–8125.

[5] P. Kaufman. Smarter Trading. McGraw-Hill, 1995.

[6] J. Kenney, E. Keeping.Moving Averages. Mathematics of Statistics, Pt. 1, 3rd ed.,Van Nostrand, Princeton, NJ (1962), 221–223.

[7] D. Korteweg, G. De Vries Philos Mag (Ser 5) 1895 422 443

[8] A. Polyanin, A. Manzhirov. Handbook of Integral Equations. CRC Press, Boca Raton, 1998.

[9] S. Skiena., Minkowski Sum. The Algorithm Design Manual, Springer-Verlag, New York (1997), 395–396.

[10] R. Szeliski. Computer Vision, Algorithms and Application. Springer, 2011.

[11] V. Vatchev Jaen J. Approx. 2012 61 71

[12] R. Wein Lecture Notes in Computer Science 2006 829 840

Cité par Sources :