Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_2_a7, author = {K. Pankrashkin}, title = {On the {Discrete} {Spectrum} of {Robin} {Laplacians} in {Conical} {Domains}}, journal = {Mathematical modelling of natural phenomena}, pages = {100--110}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2016}, doi = {10.1051/mmnp/201611208}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611208/} }
TY - JOUR AU - K. Pankrashkin TI - On the Discrete Spectrum of Robin Laplacians in Conical Domains JO - Mathematical modelling of natural phenomena PY - 2016 SP - 100 EP - 110 VL - 11 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611208/ DO - 10.1051/mmnp/201611208 LA - en ID - MMNP_2016_11_2_a7 ER -
%0 Journal Article %A K. Pankrashkin %T On the Discrete Spectrum of Robin Laplacians in Conical Domains %J Mathematical modelling of natural phenomena %D 2016 %P 100-110 %V 11 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611208/ %R 10.1051/mmnp/201611208 %G en %F MMNP_2016_11_2_a7
K. Pankrashkin. On the Discrete Spectrum of Robin Laplacians in Conical Domains. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 100-110. doi : 10.1051/mmnp/201611208. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611208/
[1] J. Phys. A: Math. Theor 2014
, ,[2] V. Bonnaillie-Noël, H. Kovařík, K. Pankrashkin (Eds): Mini-workshop: Eigenvalue problems in surface superconductivity. Oberwolfach Rep. (to appear).
[3] P. Bryan, J. Louie: Classification of convex ancient solutions to curve shortening flow on the sphere. J. Geom. Anal. (to appear). Preprint arXiv:1408.5523.
[4] D. Daners, J. B Kennedy: On the asymptotic behaviour of the eigenvalues of a Robin problem. Differ. Integr. Eq., 237/8 (2010), 659–669.
[5] Commun. Pure Appl. Anal. 2015 1239 1258
, ,[6] G. Del Grosso, M. Campanino: A construction of the stochastic process associated to heat diffusion in a polygonal domain. Bolletino Unione Mat. Ital., 13-B (1976) 876–895.
[7] J. Math. Phys. 2014 122101
,[8] Portugal. Math. 2014 141 156
, ,[9] J. Phys. A: Math. Theor. 2010
,[10] Z. Angew. Math. Phys. 2007 224 245
,[11] J. London Math. Soc. 2015 225 248
,[12] B. Helffer, A. Kachmar: Eigenvalues for the Robin Laplacian in domains with variable curvature. Tran. Amer. Math. Soc. (to appear), preprint arXiv:1411.2700 (2014).
[13] P. D. Hislop, I. M. Sigal: Introduction to spectral theory. Springer, 1995.
[14] SIAM J. Appl. Math. 1998 1622 1647
, ,[15] Math. Nachr. 2008 272 281
,[16] Pacific J. Math. 2004 323 334
,[17] Nanosystems: Phys. Chem. Math. 2013 474 483
[18] Nanosystems: Phys. Chem. Math. 2015 46 56
[19] K. Pankrashkin, N. Popoff: Mean curvature bounds and eigenvalues of Robin Laplacians. Calc. Var. PDE. (to appear), preprint arXiv:1407.3087 (2014).
[20] K. Pankrashkin, N. Popoff: An effective Hamiltonian for the eigenvalue asymptotics of a Robin Laplacian with a large parameter. Preprint arXiv:1502.00877 (2015).
Cité par Sources :