On the Well-posedness of Some generalized Characteristic Cauchy Problems
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 89-99.

Voir la notice de l'article provenant de la source EDP Sciences

By means of convenient regularization for an ill posed Cauchy problem, we define an associated generalized problem and discuss the conditions for the solvability of it. To illustrate this, starting from the semilinear unidirectional wave equation with data given on a characteristic curve, we show existence and uniqueness of the solution.
DOI : 10.1051/mmnp/201611207

J.-A. Marti 1 ; V. Dévoué 1 ; A. Delcroix 2 ; E. Allaud 1 ; H. Vernaeve 3

1 Laboratoire CEREGMIA, Université des Antilles, Campus de Shoelcher BP 7209, 97275 Schoelcher Cedex, Martinique
2 Laboratoire CRREF, IUFM de Guadeloupe, Morne Ferret, BP 399, 97178 Abymes Cedex, Guadeloupe
3 Department of Mathematics, Ghent University, Building S22, Krijgslaan 281, B 9000 Gent, Belgium
@article{MMNP_2016_11_2_a6,
     author = {J.-A. Marti and V. D\'evou\'e and A. Delcroix and E. Allaud and H. Vernaeve},
     title = {On the {Well-posedness} of {Some} generalized {Characteristic} {Cauchy} {Problems}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {89--99},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.1051/mmnp/201611207},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611207/}
}
TY  - JOUR
AU  - J.-A. Marti
AU  - V. Dévoué
AU  - A. Delcroix
AU  - E. Allaud
AU  - H. Vernaeve
TI  - On the Well-posedness of Some generalized Characteristic Cauchy Problems
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 89
EP  - 99
VL  - 11
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611207/
DO  - 10.1051/mmnp/201611207
LA  - en
ID  - MMNP_2016_11_2_a6
ER  - 
%0 Journal Article
%A J.-A. Marti
%A V. Dévoué
%A A. Delcroix
%A E. Allaud
%A H. Vernaeve
%T On the Well-posedness of Some generalized Characteristic Cauchy Problems
%J Mathematical modelling of natural phenomena
%D 2016
%P 89-99
%V 11
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611207/
%R 10.1051/mmnp/201611207
%G en
%F MMNP_2016_11_2_a6
J.-A. Marti; V. Dévoué; A. Delcroix; E. Allaud; H. Vernaeve. On the Well-posedness of Some generalized Characteristic Cauchy Problems. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 89-99. doi : 10.1051/mmnp/201611207. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611207/

[1] E. Allaud, V. Dévoué J. Appl. Anal. 2013 1 29

[2] J.-F. Colombeau. New Generalized Functions and Multiplication of Distributions. North-Holland, Amsterdam, Oxford, New-York, 1984.

[3] A. Delcroix J. Math. Anal. Appl. 2008 394 403

[4] A. Delcroix. A new approach to temperate generalized Colombeau functions. Publ. Inst. Math. Beograd, N.S., 84 (2008), no. 98, 109–121. Doi: 10.2298/PIM0898109D

[5] A. Delcroix, V. Dévoué, J.-A. Marti J. Math. Anal. Appl. 2009 386 402

[6] A. Delcroix, D. Scarpalézos Monatsh. Math. 2000 1 14

[7] V. Dévoué Dissertationes math. 2007 1 69

[8] V. Dévoué J. Appl. Anal. 2009 1 32

[9] Yu V Egorov Russ. Math. Surv. 1971 113 130

[10] L. Gårding, T. Kotake, J. Leray Bull. Soc. Math. France 1964 263 361

[11] M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer. Geometric Theory of Generalized Functions with Applications to General Relativity. Kluwer Academic Publ., Dordrecht, 2001.

[12] M. Hasler, J.-A. Marti. Functorial methods in asymptotic extensions of topological algebras. Preprint (2009).

[13] L. Hörmander Ann. Math. 1968 341 370

[14] J.-A. Marti. (C,E,P) -Sheaf structure and applications. In: Nonlinear theory of generalized functions. M. Grosser and alii, Eds. Research notes in mathematics. Chapman Hall/CRC, (1999), 175–186

[15] J.-A. Marti Pacific J. Math. 2003 165 187

[16] M. Nedeljkov, S. Pilipović, D. Scarpalezos. The linear theory of Colombeau generalized functions. Pitman Research Notes in Mathematics Series 385, Longman Scientific Technical, Harlow, 1998.

[17] M. Oberguggenberger. Multiplication of Distributions and Applications to Partial Differential Equations.Pitman Research Notes in Mathematics 259, Longman Scientific Technical, Harlow, 1992.

[18] M. Oberguggenberger Matemàtica Contemporânea 2004 169 187

[19] S. Pilipovic, D. Scarpalézos Acta Appl. Math. 2006 67 82

[20] H. Vernaeve Monatsh. Math. 2009 195 213

Cité par Sources :