Analytical Predictions of Period-1 motions to Chaos in a Periodically Driven Quadratic Nonlinear Oscillator with a Time-delay
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 75-88.

Voir la notice de l'article provenant de la source EDP Sciences

In this paper, periodic motions in a periodically forced, damped, quadratic nonlinear oscillator with time-delayed displacement are analytically predicted through implicit discrete mappings of the corresponding differential equation. From mapping structures, bifurcation trees of periodic motions are achieved analytically, and the corresponding stability and bifurcation analysis are carried out through eigenvalue analysis. From the analytical prediction, numerical results of periodic motions are illustrated to verify such an analytical prediction. The semianalytical method gives the analytical prediction of the periodic motions matching very well with the approximate analytical solution for the time-delayed, quadratic nonlinear system. The method can also be applied to other time-delayed nonlinear systems.
DOI : 10.1051/mmnp/201611206

A. C. J Luo 1 ; S. Xing 2

1 Department of Mechanical and Industry Engineering Southern Illinois University Edwardsville, Edwardsville, IL-62026, USA
2
@article{MMNP_2016_11_2_a5,
     author = {A. C. J Luo and S. Xing},
     title = {Analytical {Predictions} of {Period-1} motions to {Chaos} in a {Periodically} {Driven} {Quadratic} {Nonlinear} {Oscillator} with a {Time-delay}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {75--88},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.1051/mmnp/201611206},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611206/}
}
TY  - JOUR
AU  - A. C. J Luo
AU  - S. Xing
TI  - Analytical Predictions of Period-1 motions to Chaos in a Periodically Driven Quadratic Nonlinear Oscillator with a Time-delay
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 75
EP  - 88
VL  - 11
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611206/
DO  - 10.1051/mmnp/201611206
LA  - en
ID  - MMNP_2016_11_2_a5
ER  - 
%0 Journal Article
%A A. C. J Luo
%A S. Xing
%T Analytical Predictions of Period-1 motions to Chaos in a Periodically Driven Quadratic Nonlinear Oscillator with a Time-delay
%J Mathematical modelling of natural phenomena
%D 2016
%P 75-88
%V 11
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611206/
%R 10.1051/mmnp/201611206
%G en
%F MMNP_2016_11_2_a5
A. C. J Luo; S. Xing. Analytical Predictions of Period-1 motions to Chaos in a Periodically Driven Quadratic Nonlinear Oscillator with a Time-delay. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 75-88. doi : 10.1051/mmnp/201611206. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611206/

[1] J. L. Lagrange. Mecanique Analytique. vol. 2, 1788.

[2] H. Poincare. Methodes Nouvelles de la Mecanique Celeste. Vol. 3, Gauthier-Villars: Paris, 1899.

[3] B. Van Der Pol Radio Review 1920 701 710

[4] P. Fatou Bulletin de la Société Mathématique de France. 1928 98 139

[5] N.M. Krylov, N.N. Bogolyubov. Methodes approchees de la mecanique nonlineaire dans leurs application a l’Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant. Academie des Sciences d’U-kraine, Kiev(French), 1935.

[6] A.C.J. Luo. Continuous Dynamical Systems. HEP/LH Scientific: Beijing/Glen Carbon, 2012.

[7] A.C.J. Luo, J.Z. Huang Journal of Vibration and Control 2012 1661 1871

[8] A.C.J. Luo, J.Z. Huang International Journal of Bifurcation and Chaos 2012

[9] A.C.J. Luo, J.Z. Huang Journal of Applied Nonlinear Dynamics 2012 73 108

[10] A.C.J. Luo, J.Z. Huang Discontinuity Nonlinearity and Complexity 2012 113 145

[11] A.C.J. Luo International Journal of Dynamics and Control 2013 330 359

[12] A.C.J. Luo, H.X. Jin Discontinuity Nonlinearity and Complexity 2014 87 107

[13] A.C.J. Luo, H.X. Jin International Journal of Dynamics and Control 2015 325 340

[14] A.C.J. Luo, A.C.J. Jin International Journal of Bifurcation and Chaos 2014

[15] A.C.J. Luo Journal of Sound and Vibration 2005 723 748

[16] A.C.J, Luo. Regularity and Complexity in Dynamical Systems. Springer: New York, 2012.

[17] A.C.J. Luo International Journal of Bifurcation and Chaos 2015

[18] A.C.J. Luo, Y. Guo Discontinuity Nonlinearity and Complexity 2015 121 150

Cité par Sources :