Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_2_a5, author = {A. C. J Luo and S. Xing}, title = {Analytical {Predictions} of {Period-1} motions to {Chaos} in a {Periodically} {Driven} {Quadratic} {Nonlinear} {Oscillator} with a {Time-delay}}, journal = {Mathematical modelling of natural phenomena}, pages = {75--88}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2016}, doi = {10.1051/mmnp/201611206}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611206/} }
TY - JOUR AU - A. C. J Luo AU - S. Xing TI - Analytical Predictions of Period-1 motions to Chaos in a Periodically Driven Quadratic Nonlinear Oscillator with a Time-delay JO - Mathematical modelling of natural phenomena PY - 2016 SP - 75 EP - 88 VL - 11 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611206/ DO - 10.1051/mmnp/201611206 LA - en ID - MMNP_2016_11_2_a5 ER -
%0 Journal Article %A A. C. J Luo %A S. Xing %T Analytical Predictions of Period-1 motions to Chaos in a Periodically Driven Quadratic Nonlinear Oscillator with a Time-delay %J Mathematical modelling of natural phenomena %D 2016 %P 75-88 %V 11 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611206/ %R 10.1051/mmnp/201611206 %G en %F MMNP_2016_11_2_a5
A. C. J Luo; S. Xing. Analytical Predictions of Period-1 motions to Chaos in a Periodically Driven Quadratic Nonlinear Oscillator with a Time-delay. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 75-88. doi : 10.1051/mmnp/201611206. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611206/
[1] J. L. Lagrange. Mecanique Analytique. vol. 2, 1788.
[2] H. Poincare. Methodes Nouvelles de la Mecanique Celeste. Vol. 3, Gauthier-Villars: Paris, 1899.
[3] Radio Review 1920 701 710
[4] Bulletin de la Société Mathématique de France. 1928 98 139
[5] N.M. Krylov, N.N. Bogolyubov. Methodes approchees de la mecanique nonlineaire dans leurs application a l’Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant. Academie des Sciences d’U-kraine, Kiev(French), 1935.
[6] A.C.J. Luo. Continuous Dynamical Systems. HEP/LH Scientific: Beijing/Glen Carbon, 2012.
[7] Journal of Vibration and Control 2012 1661 1871
,[8] International Journal of Bifurcation and Chaos 2012
,[9] Journal of Applied Nonlinear Dynamics 2012 73 108
,[10] Discontinuity Nonlinearity and Complexity 2012 113 145
,[11] International Journal of Dynamics and Control 2013 330 359
[12] Discontinuity Nonlinearity and Complexity 2014 87 107
,[13] International Journal of Dynamics and Control 2015 325 340
,[14] International Journal of Bifurcation and Chaos 2014
,[15] Journal of Sound and Vibration 2005 723 748
[16] A.C.J, Luo. Regularity and Complexity in Dynamical Systems. Springer: New York, 2012.
[17] International Journal of Bifurcation and Chaos 2015
[18] Discontinuity Nonlinearity and Complexity 2015 121 150
,Cité par Sources :