Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2016_11_2_a4, author = {R. N. Ibragimov}, title = {Discrete {Spectrum} of {Bifurcation} of {Exact} {Solutions} for {Stationary} {Longitudinal} {Waves} in the {Flow} of {Perfect} {Fluid} {Around} a {Circular} {Body} of a {Large} {Radius}}, journal = {Mathematical modelling of natural phenomena}, pages = {63--74}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2016}, doi = {10.1051/mmnp/201611205}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611205/} }
TY - JOUR AU - R. N. Ibragimov TI - Discrete Spectrum of Bifurcation of Exact Solutions for Stationary Longitudinal Waves in the Flow of Perfect Fluid Around a Circular Body of a Large Radius JO - Mathematical modelling of natural phenomena PY - 2016 SP - 63 EP - 74 VL - 11 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611205/ DO - 10.1051/mmnp/201611205 LA - en ID - MMNP_2016_11_2_a4 ER -
%0 Journal Article %A R. N. Ibragimov %T Discrete Spectrum of Bifurcation of Exact Solutions for Stationary Longitudinal Waves in the Flow of Perfect Fluid Around a Circular Body of a Large Radius %J Mathematical modelling of natural phenomena %D 2016 %P 63-74 %V 11 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611205/ %R 10.1051/mmnp/201611205 %G en %F MMNP_2016_11_2_a4
R. N. Ibragimov. Discrete Spectrum of Bifurcation of Exact Solutions for Stationary Longitudinal Waves in the Flow of Perfect Fluid Around a Circular Body of a Large Radius. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 63-74. doi : 10.1051/mmnp/201611205. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611205/
[1] Icarus 2010 755 763
, , , ,[2] Science 2009 1443 1449
, , , ,[3] G. Bachelor. An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, 1967.
[4] Comm. Pure. Appl. Math. 1991 211 257
[5] J. Bell. Hubble captures best view of mars ever obtained From Earth. HubbleSite. NASA. http://hubblesite.org/newscenter/archive/releases/2001/24, (2001), Retrieved 2010-02-27.
[6] Math. Comput. 1995 1067
[7] E. Blinova. A hydrodynamical theory of pressure and temperature waves and of centers of atmospheric action. C. R. Dokl. Acad. Sci.URSS 39, 257, 1943.
[8] E. Blinova. A method of solution of the nonlinear problem of atmospheric motions on a planetary scale. Dokl. Akad. Nauk SSSR N.S.110, 975, 1956 .
[9] J. Atmos. Sci. 2003 247 261
,[10] K. Friedrichs, D. Hyers. The existence of solitary waves. Comm. Pure. Appl. Math. 7, 1954.
[11] J. Differential Equations 1982 343 364
[12] Phys. Lett. A. 2011 3858 3865
,[13] Phys. Fluids 2011 123102
[14] Int. J. Non-Linear Mech. 2013 28 44
, ,[15] Springer: Anal. Math. Phys. 2013 201 294
, ,[16] J. Math. Fluid Mech. 2009 60
,[17] J. Fluids Eng.
,[18] Math. Model. Nat. Phenom. 2014 32 39
, ,[19] Dyn. Atmos. Oceans Volume 2015 1 11
,[20] Math. Phys. Anal. Geom. 2001 51 53
[21] D. Iftimie, G. Raugel, G. Some results on the NS equations in thin three-dimensional domains. J. Differ. Equations 169, 281, 2001.
[22] Math. Ann. 1925 256 314
[23] L. Lions, R. Teman, S. Wang. S. On the equations of the large-scale ocea., Nonlinearity 5, 1007, 1992.
[24] L. Lions, R. Teman, S. Wang. New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5, 237, 1992.
[25] Nekrasov, A.I., 1952: Exact theory of the uniform waves on the surface of hard liquid, USSR Academy of Science, Moscow.
[26] J. Math. Soc. Japan 1986
[27] C. Summerhayes, S Thorpe. Oceanography: An Illustrative Guide. Wiley, New York, 1996.
[28] W. Weijer, F. Vivier, S. Gille, H. Dijkstra, H. Multiple oscillatory modes of the Argentine Basin. Part II: The spectral origin of basin modes. J. Phys. Oceanogr. 37, 2869, 2007.
Cité par Sources :