Eigenfunction Approach to Transient Patterns in a Model of Chemotaxis
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 44-62.

Voir la notice de l'article provenant de la source EDP Sciences

In the paper we examine solutions to a model of cell movement governed by the chemotaxis phenomenon derived in [] and established via macroscopic limits of corresponding microscopic cell-based models with extended cell representations. The model is given by two PDEs for the density of cells and the concentration of a chemical. To avoid singularities in cell density, the aggregating force of chemotaxis phenomenon is attenuated by a density dependent diffusion of cells, which grows to infinity with density tending to a certain critical value. In this paper we recover the quasi-periodic structures provided by this model by means of (local in time) expansion of the solution into a basis of eigenfunctions of the linearized system. Both planar and spherical geometries are considered.
DOI : 10.1051/mmnp/201611204

P. Chatterjee 1 ; B. Kazmierczak 1

1 Institute of Fundamental Technological Research Polish Academy of Sciences
@article{MMNP_2016_11_2_a3,
     author = {P. Chatterjee and B. Kazmierczak},
     title = {Eigenfunction {Approach} to {Transient} {Patterns} in a {Model} of {Chemotaxis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {44--62},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.1051/mmnp/201611204},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611204/}
}
TY  - JOUR
AU  - P. Chatterjee
AU  - B. Kazmierczak
TI  - Eigenfunction Approach to Transient Patterns in a Model of Chemotaxis
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 44
EP  - 62
VL  - 11
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611204/
DO  - 10.1051/mmnp/201611204
LA  - en
ID  - MMNP_2016_11_2_a3
ER  - 
%0 Journal Article
%A P. Chatterjee
%A B. Kazmierczak
%T Eigenfunction Approach to Transient Patterns in a Model of Chemotaxis
%J Mathematical modelling of natural phenomena
%D 2016
%P 44-62
%V 11
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611204/
%R 10.1051/mmnp/201611204
%G en
%F MMNP_2016_11_2_a3
P. Chatterjee; B. Kazmierczak. Eigenfunction Approach to Transient Patterns in a Model of Chemotaxis. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 44-62. doi : 10.1051/mmnp/201611204. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611204/

[1] M. Alber, R. Gejji, B. Kazmierczak Appl. Math. Lett. 2009 1645 1648

[2] M. Alber, T. Glimm, H.G.E. Hentschel, B. Kazmierczak, S.A. Newman Nonlinearity 2005 125 138

[3] F.D. Batista, D. Iber, M.S. Neuberger Nature 2001 489 494

[4] R.J. Brezski, J.G. Monroe Adv. Exp. Med. Biol. 2008 12 21

[5] Y.R. Carrasco, F.D. Batista Immunity 2007 160 171

[6] S. Christley, M.S. Alber, S.A. Newman PLoS Comput. Biol. 2007

[7] H.M. Dintzis, R.Z. Dintzis, B. Vogelstein Proc. Natl. Acad. Sci. USA 1976 3671 3675

[8] R.Z. Dintzis, M.H. Middleton, H.M. Dintzis J. Immunol. 1983 2196 2203

[9] A. Gamba, D. Ambrosi, A. Coniglio, A. De Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino Phys. Rev. Lett. 2003 118101

[10] S. Guido, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi, F. Bussolino EMBO J. 2003 1771 1779

[11] B. Hat, B. Kazmierczak, T. Lipniacki PLoS Comput Biol 2011 e1002197

[12] B. Kazmierczak, T. Lipniacki J. Theor. Biol. 2009 291 296

[13] R. Kowalczyk J. Math. Anal. Appl. 2005 566 588

[14] P.M. Lushnikov, N. Chen, M. Alber Phys. Rev. E 2008 061904

[15] P. Tolar, J. Hanna, P.D. Krueger, S.K. Pierce Immunity 2009 44 55

[16] B. Vogelstein, R.Z. Dintzis, H.M. Dintzis Proc. Natl. Acad. Sci. USA 1982 395 399

[17] J. Yang, M. Reth Nature 2010 465 469

Cité par Sources :