Voir la notice de l'article provenant de la source EDP Sciences
J-M. Barbaroux 1 ; V. Vougalter 2 ; S. Vugalter 3
@article{MMNP_2016_11_2_a2, author = {J-M. Barbaroux and V. Vougalter and S. Vugalter}, title = {Localization {Error} {Estimate} for the {Massless} {Relativistic} {Kinetic} {Energy} {Operator}}, journal = {Mathematical modelling of natural phenomena}, pages = {36--43}, publisher = {mathdoc}, volume = {11}, number = {2}, year = {2016}, doi = {10.1051/mmnp/201611203}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611203/} }
TY - JOUR AU - J-M. Barbaroux AU - V. Vougalter AU - S. Vugalter TI - Localization Error Estimate for the Massless Relativistic Kinetic Energy Operator JO - Mathematical modelling of natural phenomena PY - 2016 SP - 36 EP - 43 VL - 11 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611203/ DO - 10.1051/mmnp/201611203 LA - en ID - MMNP_2016_11_2_a2 ER -
%0 Journal Article %A J-M. Barbaroux %A V. Vougalter %A S. Vugalter %T Localization Error Estimate for the Massless Relativistic Kinetic Energy Operator %J Mathematical modelling of natural phenomena %D 2016 %P 36-43 %V 11 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611203/ %R 10.1051/mmnp/201611203 %G en %F MMNP_2016_11_2_a2
J-M. Barbaroux; V. Vougalter; S. Vugalter. Localization Error Estimate for the Massless Relativistic Kinetic Energy Operator. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 36-43. doi : 10.1051/mmnp/201611203. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611203/
[1] Binding conditions for atomic N-electron systems in non-relativistic QED 2003 1101 1136
, ,[2] Dissociation of homonuclear relativistic molecular ions 2001 27 40
, ,[3] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin (1987).
[4] Ground states in non-relativistic quantum electrodynamics 2001 557 595
, ,[5] Conditions for the semiboundedness and discreteness of the spectrum in the case of one-dimensional differential operators 1961 33 36
[6] The essential spectrum of relativistic multi-particle operators 1997 1 28
, ,[7] The stability and instability of relativistic matter 1988 177 213
,[8] Approximate neutrality of large Z-ions 1988 635 644
, , ,[9] Schrödinger operators whose potentials have separated singularities 1979 109 115
[10] On the asymptotics of Born-Oppenheimer curves for large nuclear separation 1980 1143 1166
,[11] Stability of atoms in the Brown- Ravenhall model 2006 661 687
,[12] Improved estimate of the number of bound states of negatively charged bosonic atoms 1994 153 162
[13] Geometric methods in the quantum many-body problem. Nonexistence of very negative ions 1982 309 324
[14] Invariant description, with respect to transpositions of identical particles, of the energy operator spectrum of quantum-mechanical systems 1970 73 93
,[15] Finiteness of the number of discrete eigenvalues of the Schrödinger operator for a three particule system 1969 51 63
[16] The symmetry of Efimov’s effect in systems of three-quantum particles 1982 89 103
,[17] On the finiteness of discrete spectrum in the n-particle problem 1984 39 90
,[18] G.M. Zhislin 1986 95 112
[19] A study of the spectrum of the Schrödinger operator for a system of several particles 1960 81 120
[20] Finiteness of the discrete spectrum in the quantum problem of n particles 1974 60 73
Cité par Sources :