Localization Error Estimate for the Massless Relativistic Kinetic Energy Operator
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 36-43.

Voir la notice de l'article provenant de la source EDP Sciences

We derive an estimate for the localization error of the relativistic kinetic operator | ∇ | for massless particles in three dimensional configuration space. As a consequence, we obtain a localization estimate arbitrarily small in term of the localized kinetic energies.
DOI : 10.1051/mmnp/201611203

J-M. Barbaroux 1 ; V. Vougalter 2 ; S. Vugalter 3

1 Aix-Marseille Université, CNRS, CPT, UMR 7332, 13288 Marseille, France and Université de Toulon, CNRS, CPT, UMR 7332, 83957 La Garde, France.
2 University of Toronto, Department of Mathematics, Toronto, Ontario, M5S 2E4, Canada.
3 Karlsruhe Institute of Technology, Englerstrasse 2, 76131 Karlsruhe, Germany.
@article{MMNP_2016_11_2_a2,
     author = {J-M. Barbaroux and V. Vougalter and S. Vugalter},
     title = {Localization {Error} {Estimate} for the {Massless} {Relativistic} {Kinetic} {Energy} {Operator}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {36--43},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2016},
     doi = {10.1051/mmnp/201611203},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611203/}
}
TY  - JOUR
AU  - J-M. Barbaroux
AU  - V. Vougalter
AU  - S. Vugalter
TI  - Localization Error Estimate for the Massless Relativistic Kinetic Energy Operator
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 36
EP  - 43
VL  - 11
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611203/
DO  - 10.1051/mmnp/201611203
LA  - en
ID  - MMNP_2016_11_2_a2
ER  - 
%0 Journal Article
%A J-M. Barbaroux
%A V. Vougalter
%A S. Vugalter
%T Localization Error Estimate for the Massless Relativistic Kinetic Energy Operator
%J Mathematical modelling of natural phenomena
%D 2016
%P 36-43
%V 11
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611203/
%R 10.1051/mmnp/201611203
%G en
%F MMNP_2016_11_2_a2
J-M. Barbaroux; V. Vougalter; S. Vugalter. Localization Error Estimate for the Massless Relativistic Kinetic Energy Operator. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 2, pp. 36-43. doi : 10.1051/mmnp/201611203. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611203/

[1] J.-M. Barbaroux, T. Chen, S. Vugalter Binding conditions for atomic N-electron systems in non-relativistic QED 2003 1101 1136

[2] R. Benguria, H. Siedentop, E. Stockmeyer Dissociation of homonuclear relativistic molecular ions 2001 27 40

[3] H.L. Cycon, R.G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin (1987).

[4] M. Griesemer, E.H. Lieb, M. Loss Ground states in non-relativistic quantum electrodynamics 2001 557 595

[5] R.S. Ismagilov Conditions for the semiboundedness and discreteness of the spectrum in the case of one-dimensional differential operators 1961 33 36

[6] R. Lewis, H. Siedentop, S. Vugalter The essential spectrum of relativistic multi-particle operators 1997 1 28

[7] E. H. Lieb, H.-T. Yau The stability and instability of relativistic matter 1988 177 213

[8] E.H. Lieb, I.M. Sigal, B. Simon, W. Thirring Approximate neutrality of large Z-ions 1988 635 644

[9] J.D. Morgan Schrödinger operators whose potentials have separated singularities 1979 109 115

[10] J.D. Morgan, B. Simon On the asymptotics of Born-Oppenheimer curves for large nuclear separation 1980 1143 1166

[11] S. Morozov, S. Vugalter Stability of atoms in the Brown- Ravenhall model 2006 661 687

[12] M.B. Ruskai Improved estimate of the number of bound states of negatively charged bosonic atoms 1994 153 162

[13] I.M. Sigal Geometric methods in the quantum many-body problem. Nonexistence of very negative ions 1982 309 324

[14] A.G. Sigalov, I.M. Sigal Invariant description, with respect to transpositions of identical particles, of the energy operator spectrum of quantum-mechanical systems 1970 73 93

[15] J. Uchiyama Finiteness of the number of discrete eigenvalues of the Schrödinger operator for a three particule system 1969 51 63

[16] S.A. Vugalter, G.M. Zhislin The symmetry of Efimov’s effect in systems of three-quantum particles 1982 89 103

[17] S.A. Vugalter, G.M. Zhislin On the finiteness of discrete spectrum in the n-particle problem 1984 39 90

[18] S.A. Vugalter G.M. Zhislin 1986 95 112

[19] G.M. Zhislin A study of the spectrum of the Schrödinger operator for a system of several particles 1960 81 120

[20] G.M. Zhislin Finiteness of the discrete spectrum in the quantum problem of n particles 1974 60 73

Cité par Sources :