Methods of Blood Flow Modelling
Mathematical modelling of natural phenomena, Tome 11 (2016) no. 1, pp. 1-25.

Voir la notice de l'article provenant de la source EDP Sciences

This review is devoted to recent developments in blood flow modelling. It begins with the discussion of blood rheology and its non-Newtonian properties. After that we will present some modelling methods where blood is considered as a heterogeneous fluid composed of plasma and blood cells. Namely, we will describe the method of Dissipative Particle Dynamics and will present some results of blood flow modelling. The last part of this paper deals with one-dimensional global models of blood circulation. We will explain the main ideas of this approach and will present some examples of its application.
DOI : 10.1051/mmnp/201611101

N. Bessonov 1 ; A. Sequeira 2 ; S. Simakov 3, 4 ; Yu. Vassilevskii 3, 4 ; V. Volpert 5

1 Institute of Problems of Mechanical Engineering, Russian Academy of Sciences 199178 Saint Petersburg, Russia
2 Departamento de Matemática and CEMAT/IST Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
3 Moscow Institute of Physics and Technology, 9 Instituskii Lane, 141707 Dolgoprudny, Russia
4 Institute of Numerical Mathematics RAS, 7 Gubkina St., 119333 Moscow, Russia
5 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
@article{MMNP_2016_11_1_a0,
     author = {N. Bessonov and A. Sequeira and S. Simakov and Yu. Vassilevskii and V. Volpert},
     title = {Methods of {Blood} {Flow} {Modelling}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {1--25},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2016},
     doi = {10.1051/mmnp/201611101},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611101/}
}
TY  - JOUR
AU  - N. Bessonov
AU  - A. Sequeira
AU  - S. Simakov
AU  - Yu. Vassilevskii
AU  - V. Volpert
TI  - Methods of Blood Flow Modelling
JO  - Mathematical modelling of natural phenomena
PY  - 2016
SP  - 1
EP  - 25
VL  - 11
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611101/
DO  - 10.1051/mmnp/201611101
LA  - en
ID  - MMNP_2016_11_1_a0
ER  - 
%0 Journal Article
%A N. Bessonov
%A A. Sequeira
%A S. Simakov
%A Yu. Vassilevskii
%A V. Volpert
%T Methods of Blood Flow Modelling
%J Mathematical modelling of natural phenomena
%D 2016
%P 1-25
%V 11
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611101/
%R 10.1051/mmnp/201611101
%G en
%F MMNP_2016_11_1_a0
N. Bessonov; A. Sequeira; S. Simakov; Yu. Vassilevskii; V. Volpert. Methods of Blood Flow Modelling. Mathematical modelling of natural phenomena, Tome 11 (2016) no. 1, pp. 1-25. doi : 10.1051/mmnp/201611101. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201611101/

[1] M.V. Abakumov, I.V. Ashmetkov, N.B. Esikova, V.B. Koshelev, S.I. Mukhin, N.V. Sosnin, V.F. Tishkin, A.P. Favorskij, A.B. Khrulenko Matematicheskoe Modelirovanie 2000 106 117

[2] J. Alastruey, A.W. Khir, K.S. Matthys, P. Segers, S.J. Sherwin, P.R. Verdonck, Kim H. Parker, J. Peiró Journal of Biomechanics 2011 2250 2258

[3] J. Alastruey, S.M. Moore, K.H. Parker, T. David, J. Peiró, S.J. Sherwin International journal for numerical methods in fluids 2008 1061 1067

[4] J. Alastruey, K.H. Parker, J. Peiró, S.J. Sherwin Communications in Computational Physics 2008 317 336

[5] A.G. Alenitsyn, A.S. Kondratyev, I. Mikhailova, I. Siddique Journal of Prime Research in Mathematics 2008 195 205

[6] D. Alizadehrad, Y. Imai, K. Nakaaki, T. Ishikawa, T. Yamaguchi Journal of Biomechanical Science and Engineering 2012 57 71

[7] M.P. Allen, D.J. Tidesley. Computer Simulation of Liquids. Clarendon, Oxford, 1987.

[8] T. Almomani, H.S. Udaykumar, J.S. Marshall, K.B. Chandran Annals of Biomedical Engineering 2008 905 920

[9] M. Anand, K.R. Rajagopal Int. J. of Cardiovascular Medicine and Science 2004 59 68

[10] M. Anand, K. Rajagopal, K.R. Rajagopal J. Theor. Biol. 2008 725 738

[11] G. Astarita, G. Marrucci. Principles of Non-Newtonian Fluid Mechanics. McGraw Hill, 1974.

[12] P. Bagchi Biophysical Journal 2007 1858 1877

[13] H. A. Barnes J. Non-Newtonian Fluid Mech. 1997 1 33

[14] N. M. Bessonov, S.F. Golovashchenko, V. Volpert Math. Model. Nat. Phenom. 2008 44 87

[15] N. Bessonov, E. Babushkina, S.F. Golovashchenko, A. Tosenberger, F. Ataullakhanov, M. Panteleev, A. Tokarev, V. Volpert Math. Model. Nat. Phenom. 2014 69 84

[16] P.J. Blanco, R.A. Feijóo A 3D-1D-0D Computational model for the entire cardiovascular system. Computational Mechanics, eds. E.Dvorking, M. Goldschmit, M Storti 2010 5887 5911

[17] P.J. Blanco, S.M. Watanabe, M.A.R.F. Passos, P.A. Lemos, R.A. Feijóo IEEE Transaction on Biomedical Engineering 2015 736 753

[18] T. Bodnar, K. Rajagopal, A. Sequeira Math. Model. Nat. Phenom. 2011 1 24

[19] T. Bodnar, A. Sequeria Computational and Mathematical Methods in Medicine 2008 83 104

[20] C. Bui, V. Lleras, O. Pantz ESAIM: Proc. 2009 182 194

[21] A. Ya. Bunicheva, M. A. Menyailova, S. I. Mukhin, N. V. Sosnin, A. P. Favorskii Mathematical Models and Computer Simulations 2013 81 91

[22] A.Ya. Bunicheva, S.I. Mukhin, N.V. Sosnin, A.P. Favorskii Differential Equations 2004 984 999

[23] G.A. Buxton, N. Clarke Journal of Biological Physics 2006 507 521

[24] S. Čanić, E.H. Kim Mathematical Methods in the Applied Sciences 2003 1161 1186

[25] S. Čanić, J. Tambača, G. Guidoboni, A. Mikelić, C.J. Hartley, A. Rosenstrauch SIAM Journal of Applied Mathematics 2006 164 193

[26] C. G. Caro, T. J. Pedley, R. C. Schroter, W. A. Seed. The Mechanics of the Circulation. Oxford University Press, 1978.

[27] C.G. Caro, T.J. Pedley, R.C. Schroter, W.A. Seed. The Mechanics of the Circulation. 2nd Edition, Cambridge University Press, 2012.

[28] S. E. Charm, G. S. Kurland. Blood Flow and Microcirculation. John Wiley Sons, 1974.

[29] I.L. Chernyavsky, N.A. Kudryashov Advanced Science Letters 2008 226 230

[30] S. Chien, S. Usami, R.J. Dellenback, M.I. Gregersen Science 1970 977 979

[31] S. Chien, R. G. King, R. Skalak, S. Usami, A. L. Copley Biorheology 1975 341 346

[32] Y. I. Cho, K. R. Kensey Biorheology 1991 241 262

[33] E. Crepeau, M. Sorine Chaos Solitons & Fractals 2007 594 605

[34] L.M. Crowl, A.L. Fogelson Int. J. Numer. Method Biomed. Eng. 2010 471 487

[35] T. David, S. Alzaidi, H. Farr Journal of Engineering Mathematics 2009 403 415

[36] A. DiCarlo, P. Nardinocchi, G. Pontrelli, L. Teresi. A heterogeneous approach for modelling blood flow in an arterial segment. Simulations in Biomedicine V, WIT Press, 69-78, 2003.

[37] L. Dintenfass. Blood Microrheology -Viscosity Factors in Blood Flow, Ischaemia and Thrombosis. Butterworth, 1971.

[38] L. Dintenfass. Blood Viscosity, Hyperviscosity and Hyperviscosaemia. MTP Press Limited, 1985.

[39] M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn Physical Review E 2007 066707

[40] W. Dzwinel, K. Boryczko, D.A. Yuen. Modeling mesoscopic fluids with discrete-particles methods. Algorithms and results. In: Spasic AM, Hsu JP (eds) Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering. Taylor Francis, CRC Press, 715-778.

[41] A. Elgarayhi, E.K. El-Shewy, A.A. Mahmoud, A.A. Elhakem. Propagation of nonlinear pressure waves in blood. ISRN Computational Biology, 2013, Article ID 436267.

[42] E. A. Evans, R. M. Hochmuth Biophys. J. 1976 111

[43] D. Fedosov, B. Caswell, G.E. Karniadakis, General coarse-grained red blood cell models: I. Mechanics, 2009, arXiv:0905.0042 [q-bio.CB].

[44] D. Fedosov, B. Caswell, G.E. Karniadakis Biophysical Journal 2010 2215 2225

[45] D.A. Fedosov, Multiscale Modeling of Blood Flow and Soft Matter, PhD dissertation at Brown University, (2010).

[46] D.A. Fedosov, H. Lei, B. Caswell, S. Suresh, G.E. Karniadakis PLoS Computational Biology 2011 12

[47] D.A. Fedosov, H. Noguchi, G. Gompper Biomech. Model. Mechanobiol. 2014 239 258

[48] D.A. Fedosov, I.V. Pivkin, G.E. Karniadakis J. Comp. Phys. 2008 2540 2559

[49] N. Filipovic, M. Kojic, A. Tsuda Phil. Trans. R. Soc. A 2008 3265 3279

[50] A.L. Fogelson. Cell-based models of blood clotting. Single-Cell-Based Models in Biology and Medicine (ed. by A.R.A. Anderson, M.A.J. Chaplain, K.A. Rejniak), Mathematics and Biosciences in Interaction, p. 234-169, Birkhäuser Verlag Basel, 2007.

[51] L. Formaggia, D. Lamponi, M. Tuveri, A. Veneziani Computer Methods in Biomechanics and Biomedical Engineering 2006 273 288

[52] L. Formaggia, D. Lamponi, A. Quarteroni Journal of Engineering Mathematics 2003 251 276

[53] L. Formaggia, A. Quarteroni, A. Veneziani. Cardiovascular mathematics. Vol. 1. Springer, Heidelberg, 2009.

[54] T.K. Gaik, H. Demiray Chaos Solitons & Fractals 2008 1134 1145

[55] T. Gamilov, Y. Ivanov, P. Kopylov, S. Simakov, Y. Vassilevski Patient specific haemodynamic modeling after occlusion treatment in leg. Math Model. Nat. Phenom. 2014 85 97

[56] H.L. Goldsmith, V.T. Turitto Thrombosis and Haemostasis 1986 415 435

[57] S. S. Grigorjan, Y.Z. Saakjan, A. K. Tsaturjan Doklady of Academy of Science of the SSSR 1980 570 574

[58] S.S. Grigorjan, Y.Z. Saakjan, A.K. Tsatutjan Biomechanics 1984 54 75

[59] R.D. Groot, P.B. Warren J. Chem. Phys. 1997 4423 4435

[60] R.D. Guy, A.L. Fogelson, J.P. Keener Math. Med. Biol. 2007 111 130

[61] G.A. Holzapfel, T.C. Gasser, R.W. Ogden Journal of Elasticity 2000 1 48

[62] S.M. Hosseini, J.J. Feng Chem. Eng. Sci. 2009 4488 4497

[63] Y. Imai, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi Journal of Biomechanics 2010 1386 1393

[64] Y. Imai, K. Nakaaki, H. Kondo, T. Ishikawa, C.T. Lim, T. Yamaguchi Journal of Biomechanics 2011 1553 1558

[65] M. Karttunen, I. Vattulainen, A. Lukkarinen. A Novel Methods in Soft Matter Simulations. Springer, Berlin, 2004.

[66] J.Keener, J.Sneyd. Mathematical Physiology. II: Systems Physiology. Springer, 2nd edition, 2008.

[67] A.S. Kholodov. Some dynamical models of external breathing and haemodynamics accounting for their coupling and substance transport. Computer Models and Medicine Progress, Nauka, Moscow, 127-163, 2001 (in Russian).

[68] A.S. Kholodov, A.V. Evdokimov, S.S. Simakov. Numerical simulation of peripheral circulation and substance transfer with 2D models. Mathematical biology: recent trends, eds. P. Chandra, R. Kumar, 22-29, 2006.

[69] S. Kim, Y.I. Cho, A. H. Jeon, B. Hogenauer, K.R. Kensey J. Non-Newtonian Fluid Mech. 2000 47 56

[70] C.S. Kim, C. Kris, D. Kwak. Numerical models of human circulatory system under altered gravity: brain circulation. AIAA Paper No. 2004-1092, AIAA 42nd Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2004.

[71] J.F. Koleski, E.C. Eckstein Near wall concentration profiles of 1.0 and 2.5 μm beads during flow of blood suspensions, Trans Ann. Soc. Intern. Organs 1991 9 12

[72] V. Koshelev, S. Mukhin, T. Sokolova, N. Sosnin, A. Favorski Matematicheskoe Modelirovanie 2007 15 28

[73] W. Kroon, W. Huberts, M. Bosboom, F. van de Vosse. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models. Computational and Mathematical Methods in Medicine, (2012), Article ID 156094.

[74] P.W. Kuchel, E.D. Fackerell Bulletin of Mathematical Biology 1999 209 220

[75] I. Larrabidea, P.J. Blanco, S.A. Urquiza, E.A. Dari, M.J. Véneref, N.A. De Souza E Silvac, R.A. Feijóo Computers in Biology and Medicine 2012 993 1004

[76] M. B. Lawrence, T. A. Springer Cell 1991 859 873

[77] R.C. Leif, J. Vinograd Proc. Natl. Acad. Sci. USA 1964 3

[78] S. Leibler, A.C. Maggs Proc. Natl. Acad. Sci. USA 1990 6433 6435

[79] D. Liepsch, St. Moravec Biorheology 1984 571 586

[80] K. Logana, R. Balossino, F. Migliavacca, G. Pennati, E.L. Bove, M.R. Leval, G. Dubini Journal of Biomechanics 2005 1129 1141

[81] L. Lopez, I.M. Duck, W.A. Hunt Biophys. J. 1968 1228 1235

[82] K. Low, R. Van Loon, I. Sazonov, R.L.T. Bevan, P. Nithiarasu International Journal of Numerical Methods in Biomedical Engineering 2012 1224 1246

[83] G. D. O. Lowe, Ed. Clinical Blood Rheology, Vol. I and II. CRC Press, Boca Raton, Florida, 1998.

[84] J.L. Mcwhirter, H. Noguchi, G. Gompper PNAS 2009

[85] E. W. Merrill, E. R. Gilliland, G. Cokelet, H. Shin, A. Britten, R. E. Wells Biophys. J. 1963 199 213

[86] E. W. Merrill, G. C. Cokelet, A. Britten, R. E. Wells Circulat. Res. 1963 48 55

[87] V. Milisić, A. Quarteroni ESAIM: Mathematical Modelling and Numerical Analysis 2004 613 632

[88] N. Mohandas, P.G. Gallagher Blood 2008 3939 3948

[89] P.C. F. Moller, J. Mewis, D. Bonn Soft Matter 2006 274 288

[90] Y. Mori, C. Peskin Advances in Applied Mathematics 2009 75 100

[91] L.O. Müller, C. Parés, E. Toro Journal of Computational Physics 2013 53 85

[92] L.O. Müller, E. Toro International Journal for Numerical Methods in Biomedical Engineering 2014 681 725

[93] L.L. Munn, M.M. Dupin Annals of Biomedical Engineering 2008 534 544

[94] S. Muñoz San Martín, J.L. Sebastián, M. Sancho1, G. Álvarez. Modeling human erythrocyte shape and size abnormalities. arXiv:q-bio/0507024 [q-bio.QM], 14 Jul 2005.

[95] J.P. Mynard, P. Nithiarasu Communications in Numerical Methods in Engineering 2008 367 417

[96] Q. D. Nguyen, D. V. Boger Annual Reviews 1992 47 88

[97] H. Noguchi, G. Gompper PNAS 2005 14159 14164

[98] D. Obrist, B. Weber, A. Buck, P. Jenny. Red blood cell distribution in simplified capillary networks, Phil. Trans. R. Soc. A, 368 (2010), doi: 10.1098/rsta.2010.0045.

[99] T. Ohashi, H. Liu, T. Yamaguchi. Computational fluid dynamic simulation of the flow through venous valve. In: Clinical Application of Computational Mechanics to the Cardiovascular System, 186–189, Springer, 2000.

[100] M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim, J. Larsen Annals of Biomedical Engineering 2000 1281 1299

[101] R. G. Owens J. Non -Newtonian Fluid Mech. 2006 57 70

[102] E. Ozawa, K. Bottom, X. Xiao, R.D. Kamm Annals of Biomedical Engineering 2001 284 297

[103] Q. Pan, R. Wang, B. Reglin, G. Cai, J. Yan, A.R. Pries, G. Ning Journal of Biomedical Engineering 2014 011009

[104] T.J. Pedley, X.Y. Luo Theoretical and Computational Fluid Dynamics 1998 277 294

[105] D. Pinho, A. Pereira, R. Lima, T. Ishikawa, Y. Imai, T. Yamaguchi. Red blood cell dispersion in 100 μm glass capillaries: the temperature effect. C.T. Lim and J.C.H. Goh (Eds.), WCB 2010, IFMBE Proceedings, 31 (2010), 1067–1070.

[106] E. Pinto, B. Taboada, R. Rodrigues, V. Faustino, A. Pereira, R. Lima WebmedCentral Biomedical Engineering 2013 8

[107] I.V. Pivkin, G.E. Karniadakis Physical Review letters 2008 118105

[108] I.V. Pivkin, G.E. Karniadakis J. Comp. Phys. 2005 114 128

[109] I.V. Pivkin, P.D. Richardson, G. Karniadakis PNAS 2006 17164 17169

[110] A. S. Popel, P. C. Johnson Annu. Rev. Fluid Mech. 2005 43 69

[111] C. Pozrikidis. Modeling and Simulation of Capsules and Biological Cells, Chapman Hall/CRC, 2003.

[112] D. Quemada Rheological Acta 1978 643 653

[113] K.R. Rajagopal, A.R. Srinivasa Journal of Non-Newtonian Fluid Mechanics 2000 207 227

[114] A.M.Robertson, A.Sequeira, M.V. Kameneva. Hemorheology. In G.P. Galdi, R. Rannacher, A.M. Robertson, S. Turek (Eds.) Hemodynamical Flows: Modeling, Analysis and Simulation. (Oberwolfach Seminars), Birkhäuser Verlag, 37, 63-120, 2008.

[115] M.C. Roco, editor. Particulate Two-Phase Flow. Series in Chemical Engineering. Butterworth-Heinemann Publ., 1993.

[116] M. Rosar, C. Peskin New York Journal of Mathematics 2001 281 302

[117] U.D. Schiller. Dissipative Particle Dynamics. A Study of the Methodological Background. Diploma thesis at Faculty of Physics University of Bielefeld, 2005.

[118] H. Schmid-Schönbein, R. E. Wells Physiology Rev. 1971 147 219

[119] G. W. Scott-Blair Nature 1959 613 614

[120] S. Sherwin, V. Franke, J. Peiró, K. Parker Journal of Engineering Mathematics 2003 217 250

[121] S.J. Sherwin, L. Formaggia, J. Peiró, V. Franke International Journal for Numerical Methods in Fluids 2003 673 700

[122] Y. Shi, P. Lawford, R. Hose. Review of zero-D and 1-D models of blood flow in the cardiovascular system. BioMedical Engineering Online, 10:33 (2011), doi:10.1186/1475-925X-10-33.

[123] S.S. Simakov, T.M. Gamilov, Y.N. Soe Russian Journal of Numerical Analysis and Mathematical Modelling 2013 485 504

[124] S.S. Simakov, A.S. Kholodov Mathematical Models and Computer Simulations 2009 283 295

[125] R. Skalak, A. Tozeren, R. Zarda, S. Chein Biophysical Journal 1973 245 264

[126] M.F. Snyder, V.C. Rideout. Computer simulation studies of the venous circulation. IEEE Transactions on Bio-Medical Engineering, BME-16 (1969) no. 4, 325-334.

[127] S. Suresh, J. Spatz, J. P. Mills, A. Micoulet, M. Dao, C. T. Lim, M. Beil, T. Seufferlein Acta Biomaterialia 2005 15 30

[128] C.R. Sweet, S. Chatterjee, Z. Xu, K. Bisordi, E.D. Rosen, M. Alber J. R. Soc. Interface 2011 1760 1771

[129] G. B. Thurston Biophys. J. 1972 1205 1217

[130] G.B. Thurston Biorheology 1994 179 192

[131] G. B. Thurston Advances in Hemodynamics and Hemorheology 1996 1 30

[132] A.A. Tokarev, A.A. Butylin, F.I. Ataullakhanov Biophys. J. 2011 799 808

[133] A.A. Tokarev, A.A. Butylin, F.I. Ataullakhanov Computer Research and Modeling 2012 185 200

[134] A.A. Tokarev, A.A. Butylin, E.A. Ermakova, E.E. Shnol, G.P. Panasenko, F.I. Ataullakhanov Biophysical Journal 2011 1835 1843

[135] A. Tokarev, I. Sirakov, G. Panasenko, V. Volpert, E. Shnol, A. Butylin, F. Ataullakhanov Russian Journal of Numerical Analysis and Mathematical Modelling 2012 192 212

[136] A. Tosenberger, V. Salnikov, N. Bessonov, E. Babushkina, V. Volpert Math. Model. Nat. Phenom. 2011 320 332

[137] A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, V. Volpert Journal of Theoretical Biology 2013 30 41

[138] K. Tsubota, S. Wada International Journal of Mechanical Sciences 2010 356 364

[139] K. Tsubota, S. Wada, H. Kamada, Y. Kitagawa, R. Lima, T. Yamaguchi Journal of the Earth Simulator 2006 2 7

[140] F. J. Walburn, D. J. Schneck Biorheology 1976 201 210

[141] Yu. Vassilevskii, S. Simakov, V. Salamatova, Yu. Ivanov, T. Dobroserdova Russian Journal of Numerical Analysis and Mathematical Modelling 2011 605 622

[142] Y. Vassilevski, S. Simakov, V. Salamatova, Y. Ivanov, T. Dobroserdova Math. Model. Nat. Phenom. 2011 333 349

[143] Y. Vassilevski, S. Simakov, V. Salamatova, Y. Ivanov, T. Dobroserdova Math. Model. Nat. Phenom. 2011 82 99

[144] F.N. Van De Vosse, N. Stergiopulos Annual Review of Fluid Mechanics 2011 467 499

[145] N. Xiao, J. Alastruey-Arimon, C.A. Figueroa International Journal for Numerical Methods in Biomedical Engineering. 2014 204 231

[146] Z. Xu, N. Chen, M.M. Kamocka, E.D. Rosen, M. Alber J. R. Soc. Interface 2008 705 722

[147] C. Yeh, A.C. Calvez, E.C. Eckstein Biophysical Journal 1994 1252 1259

[148] C. Yeh, E.C. Eckstein Biophysical Journal 1994 1706 1716

[149] K.K. Yeleswarapu, M.V. Kameneva, K. R. Rajagopal, J. F. Antaki Mechanics Research Communications 1998 257 262

[150] J. Zhang, P.C. Johnson, A.S. Popel Microvasc Res. 2009 265 272

Cité par Sources :