Flow Structure Identification for Nonlinear Dynamical Systems via Finite-Time Lyapunov Analysis
Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 91-104.

Voir la notice de l'article provenant de la source EDP Sciences

Identifying and characterizing geometric structure in the flow of a nonlinear dynamical system can facilitate understanding, model simplification, and solution approximation. The approach addressed in this paper uses information from finite-time Lyapunov exponents and vectors associated with the tangent linear dynamics. We refer to this approach as finite-time Lyapunov analysis (FTLA). FTLA identifies the potential for flow structure based on the stability and timescales implied by the spectrum of finite-time Lyapunov exponents. The corresponding Lyapunov vectors provide a basis for representing a splitting of the tangent space at phase points consistent with the splitting of the spectrum. A key property that makes FTLA viable is the exponential convergence of the splitting as the finite time increases. Tangency conditions for the vector field are used to determine points on manifolds of interest. The benefits of the FTLA approach are the dynamical model need not be in a special normal form, the manifolds of interest need not be attracting nor of known dimension, and the manifolds need not be associated with a fixed point or periodic orbit. After a brief review of FTLA, it is applied to spacecraft stationkeeping around a libration point in the circular restricted three-body problem. This application requires locating the stable and unstable subspaces at points on periodic and aperiodic orbits. For the periodic case, the FTLA subspaces are shown to agree with the Floquet subspaces; for the quasi-periodic case, the accuracy of the FTLA subspaces is demonstrated by simulation.
DOI : 10.1051/mmnp/201510308

M. Maggia 1 ; K. D. Mease 1

1 Department of Mechanical and Aerospace Engineering, University of California Irvine CA, 92697, USA
@article{MMNP_2015_10_3_a7,
     author = {M. Maggia and K. D. Mease},
     title = {Flow {Structure} {Identification} for {Nonlinear} {Dynamical} {Systems} via {Finite-Time} {Lyapunov} {Analysis}},
     journal = {Mathematical modelling of natural phenomena},
     pages = {91--104},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {2015},
     doi = {10.1051/mmnp/201510308},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201510308/}
}
TY  - JOUR
AU  - M. Maggia
AU  - K. D. Mease
TI  - Flow Structure Identification for Nonlinear Dynamical Systems via Finite-Time Lyapunov Analysis
JO  - Mathematical modelling of natural phenomena
PY  - 2015
SP  - 91
EP  - 104
VL  - 10
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201510308/
DO  - 10.1051/mmnp/201510308
LA  - en
ID  - MMNP_2015_10_3_a7
ER  - 
%0 Journal Article
%A M. Maggia
%A K. D. Mease
%T Flow Structure Identification for Nonlinear Dynamical Systems via Finite-Time Lyapunov Analysis
%J Mathematical modelling of natural phenomena
%D 2015
%P 91-104
%V 10
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201510308/
%R 10.1051/mmnp/201510308
%G en
%F MMNP_2015_10_3_a7
M. Maggia; K. D. Mease. Flow Structure Identification for Nonlinear Dynamical Systems via Finite-Time Lyapunov Analysis. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 91-104. doi : 10.1051/mmnp/201510308. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201510308/

[1] A. Adrover, F. Creta, M. Giona, M. Valorani, V. Vitacolonna Physica D 2006 121 146

[2] E.M. Alessi, G. Gómez, J.J. Masdemont Commun. Nonlinear Sci. Numer. Simulat. 2009 4153 4167

[3] L. Barreira, Y.B. Pesin. Lyapunov Exponents and Smooth Ergodic Theory. University Lecture Series 23. American Mathematical Society, Providence, 2002.

[4] M. Belló, G. Gómez, J.J. Masdemont. Invariant Manifolds, Lagrangian Trajectories and Space Mission Design. In: Space Manifold Dynamics. Springer, 2010, 1–96.

[5] M. Branicki, A. M. Macho, S. Wiggins Physica D 2011 282 304

[6] E. Chiavazzo, A.N. Gorban, I.V. Karlin Comm. in Comp. Physics 2007 964 992

[7] L. Dieci, E.S. Van Vleck SIAM J. Numerical Analysis 2002 516 542

[8] E.J. Doedel, V.A. Romanov, R.C. Paffenroth, H.B. Keller, D.J. Dichmann, J. Galán-Vioque, A. Vanderbauwhede International Journal of Bifurcation and Chaos 2007 2625 2677

[9] E.J. Doedel, AUTO, ftp://ftp.cs.concordia.ca/pub/doedel/auto.

[10] D.C. Folta, T.A. Pavlak, A.F. Haapala, K.C. Howell, M.A. Woodard Acta Astronautica 2014 421 433

[11] C. Froeschle, E. Lega, R. Gonczi Celestial Mechanics and Dynamical Astronomy 1997 41 62

[12] C.W. Gear, T.J. Kaper, I.G. Kevrekidis, A. Zagaris SIAM J. Appl. Dyn. Syst. 2005 711 732

[13] G.H. Golub, C.F. Van Loan. Matrix Computations, 3rd Edition. The Johns Hopkins University Press, Baltimore, 1996.

[14] G. Gómez, J. Llibre, R. Martínez, C. Simó. Station Keeping of Libration Point Orbits. Technical Report ESOC Contract 5648/83/D/JS(SC), 1985.

[15] G. Gómez, J. Masdemont, C. Simó Celestial Mechanics and Dynamical Astronomy 1993 541 562

[16] G. Haller Chaos 2000 99 108

[17] B. Hasselblatt, Y.B. Pesin. Partially Hyperbolic Dynamical Systems. In: B. Haselblatt and A. Katok (Eds.), Handbook of Dynamical Systems. vol. 1B. Elsevier, New York, 2005.

[18] K.C. Howell, B. Barden, M. Lo Journal of Astronautics Science 1997 161 178

[19] T.M. Keeter. Station-Keeping Strategies for Libration Point Orbits: Target Point and Floquet Mode Approaches. Ph.D. Dissertation. Purdue University, 1994.

[20] W.S. Koon, M.W. Lo, J.E. Marsden, S.D. Ross Chaos 2000 427 469

[21] S.H. Lam, D.A. Goussis Int. J. Chemical Kinetics 1994 461 486

[22] U. Maas, S.B. Pope Combustion and Flame 1992 239 264

[23] K.D. Mease Applied Mathematics and Computation 2005 627 648

[24] K.D. Mease, U. Topcu, E. Aykutluğ, M. Maggia. Characterizing Two-Timescale Nonlinear Dynamics Using Finite-Time Lyapunov Exponents and Vectors. (2014). arXiv:0807.0239v3 [math.DS].

[25] D.S. Naidu, A.J. Calise J. Guidance, Control and Dynamics 2001 1057 1078

[26] R.E. O’Malley. Singular Perturbation Methods for Ordinary Differential Equations. Springer-Verlag, New York, 1991.

[27] M.R. Roussel, S.J. Fraser J. Chem. Phys. 1990 1072 1081

[28] L.A. Segel, M. Slemrod SIAM Review 1989 446 477

[29] S. C. Shadden, F. Lekien, J. E. Marsden Physica D 2005 271 304

[30] C.R. Short, K.C. Howell Acta Astronautica 2014 562 607

[31] C. Simó, G. Gómez, J. Llibre, R. Martínez. Station Keeping of a Quasiperiodic Halo Orbit Using Invariant Manifolds. In: Proceedings of the Second International Symposium on Spacecraft Flight Dynamics. Darmstadt, FR Germany, 20-23 October, 1986 (ESA SP-255, Dec. 1986).

[32] V. Szebehely. Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York, 1967.

[33] H. Wan, B.F. Villac. Lunar L1 Earth-Moon Propellant Depot Orbital and Transfer Options Analysis. AAS 13-885, (2013).

[34] H. Wan, personal communication, 2013.

[35] S. Yoden, M. Nomura J. Atmospheric Sciences 1993 1531 1543

Cité par Sources :