Voir la notice de l'article provenant de la source EDP Sciences
@article{MMNP_2015_10_3_a7, author = {M. Maggia and K. D. Mease}, title = {Flow {Structure} {Identification} for {Nonlinear} {Dynamical} {Systems} via {Finite-Time} {Lyapunov} {Analysis}}, journal = {Mathematical modelling of natural phenomena}, pages = {91--104}, publisher = {mathdoc}, volume = {10}, number = {3}, year = {2015}, doi = {10.1051/mmnp/201510308}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201510308/} }
TY - JOUR AU - M. Maggia AU - K. D. Mease TI - Flow Structure Identification for Nonlinear Dynamical Systems via Finite-Time Lyapunov Analysis JO - Mathematical modelling of natural phenomena PY - 2015 SP - 91 EP - 104 VL - 10 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201510308/ DO - 10.1051/mmnp/201510308 LA - en ID - MMNP_2015_10_3_a7 ER -
%0 Journal Article %A M. Maggia %A K. D. Mease %T Flow Structure Identification for Nonlinear Dynamical Systems via Finite-Time Lyapunov Analysis %J Mathematical modelling of natural phenomena %D 2015 %P 91-104 %V 10 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201510308/ %R 10.1051/mmnp/201510308 %G en %F MMNP_2015_10_3_a7
M. Maggia; K. D. Mease. Flow Structure Identification for Nonlinear Dynamical Systems via Finite-Time Lyapunov Analysis. Mathematical modelling of natural phenomena, Tome 10 (2015) no. 3, pp. 91-104. doi : 10.1051/mmnp/201510308. https://geodesic-test.mathdoc.fr/articles/10.1051/mmnp/201510308/
[1] Physica D 2006 121 146
, , , ,[2] Commun. Nonlinear Sci. Numer. Simulat. 2009 4153 4167
, ,[3] L. Barreira, Y.B. Pesin. Lyapunov Exponents and Smooth Ergodic Theory. University Lecture Series 23. American Mathematical Society, Providence, 2002.
[4] M. Belló, G. Gómez, J.J. Masdemont. Invariant Manifolds, Lagrangian Trajectories and Space Mission Design. In: Space Manifold Dynamics. Springer, 2010, 1–96.
[5] Physica D 2011 282 304
, ,[6] Comm. in Comp. Physics 2007 964 992
, ,[7] SIAM J. Numerical Analysis 2002 516 542
,[8] International Journal of Bifurcation and Chaos 2007 2625 2677
, , , , , ,[9] E.J. Doedel, AUTO, ftp://ftp.cs.concordia.ca/pub/doedel/auto.
[10] Acta Astronautica 2014 421 433
, , , ,[11] Celestial Mechanics and Dynamical Astronomy 1997 41 62
, ,[12] SIAM J. Appl. Dyn. Syst. 2005 711 732
, , ,[13] G.H. Golub, C.F. Van Loan. Matrix Computations, 3rd Edition. The Johns Hopkins University Press, Baltimore, 1996.
[14] G. Gómez, J. Llibre, R. Martínez, C. Simó. Station Keeping of Libration Point Orbits. Technical Report ESOC Contract 5648/83/D/JS(SC), 1985.
[15] Celestial Mechanics and Dynamical Astronomy 1993 541 562
, ,[16] Chaos 2000 99 108
[17] B. Hasselblatt, Y.B. Pesin. Partially Hyperbolic Dynamical Systems. In: B. Haselblatt and A. Katok (Eds.), Handbook of Dynamical Systems. vol. 1B. Elsevier, New York, 2005.
[18] Journal of Astronautics Science 1997 161 178
, ,[19] T.M. Keeter. Station-Keeping Strategies for Libration Point Orbits: Target Point and Floquet Mode Approaches. Ph.D. Dissertation. Purdue University, 1994.
[20] Chaos 2000 427 469
, , ,[21] Int. J. Chemical Kinetics 1994 461 486
,[22] Combustion and Flame 1992 239 264
,[23] Applied Mathematics and Computation 2005 627 648
[24] K.D. Mease, U. Topcu, E. Aykutluğ, M. Maggia. Characterizing Two-Timescale Nonlinear Dynamics Using Finite-Time Lyapunov Exponents and Vectors. (2014). arXiv:0807.0239v3 [math.DS].
[25] J. Guidance, Control and Dynamics 2001 1057 1078
,[26] R.E. O’Malley. Singular Perturbation Methods for Ordinary Differential Equations. Springer-Verlag, New York, 1991.
[27] J. Chem. Phys. 1990 1072 1081
,[28] SIAM Review 1989 446 477
,[29] Physica D 2005 271 304
, ,[30] Acta Astronautica 2014 562 607
,[31] C. Simó, G. Gómez, J. Llibre, R. Martínez. Station Keeping of a Quasiperiodic Halo Orbit Using Invariant Manifolds. In: Proceedings of the Second International Symposium on Spacecraft Flight Dynamics. Darmstadt, FR Germany, 20-23 October, 1986 (ESA SP-255, Dec. 1986).
[32] V. Szebehely. Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York, 1967.
[33] H. Wan, B.F. Villac. Lunar L1 Earth-Moon Propellant Depot Orbital and Transfer Options Analysis. AAS 13-885, (2013).
[34] H. Wan, personal communication, 2013.
[35] J. Atmospheric Sciences 1993 1531 1543
,Cité par Sources :