Voir la notice de l'article provenant de la source Numdam
This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential
@article{M2AN_2009__43_3_445_0, author = {Knezevic, David J. and S\"uli, Endre}, title = {Spectral {Galerkin} approximation of {Fokker-Planck} equations with unbounded drift}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {445--485}, publisher = {EDP-Sciences}, volume = {43}, number = {3}, year = {2009}, doi = {10.1051/m2an:2008051}, mrnumber = {2536245}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2008051/} }
TY - JOUR AU - Knezevic, David J. AU - Süli, Endre TI - Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2009 SP - 445 EP - 485 VL - 43 IS - 3 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2008051/ DO - 10.1051/m2an:2008051 LA - en ID - M2AN_2009__43_3_445_0 ER -
%0 Journal Article %A Knezevic, David J. %A Süli, Endre %T Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2009 %P 445-485 %V 43 %N 3 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2008051/ %R 10.1051/m2an:2008051 %G en %F M2AN_2009__43_3_445_0
Knezevic, David J.; Süli, Endre. Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 3, pp. 445-485. doi : 10.1051/m2an:2008051. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2008051/
[1] A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139 (2006) 153-176.
, , and ,[2] A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144 (2007) 98-121.
, , and ,[3] Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM Z. Angew. Math. Mech. 87 (2007) 632-642. | Zbl | MR
and ,[4] Existence of global weak solutions to kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506-546. | MR
and ,[5] Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Mod. Meth. Appl. Sci. 18 (2008) 935-971. | Zbl | MR
and ,[6] Numerical approximation of corotational dumbbell models for dilute polymers. IMA J. Numer. Anal. (2008) online. Available at http://imajna.oxfordjournals.org/cgi/content/abstract/drn022. | MR
and ,[7] Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. Sci. 15 (2005) 939-983. | Zbl | MR
, and ,[8] Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212-1240. | Zbl | MR
,[9] Spectral methods, in Handbook of Numerical Analysis V, P. Ciarlet and J. Lions Eds., Elsevier (1997). | MR
and ,[10] The density of smooth functions in weight spaces. Czechoslova. Math. J. 18 (1968) 178-188. | Zbl | MR
and ,[11] Certain properties of weight classes. Dokl. Akad. Nauk SSSR 171 (1966) 514-516. | Zbl | MR
, and ,[12] Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics. Second edition, John Wiley and Sons (1987).
, , and ,[13] Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory. Second edition, John Wiley and Sons (1987).
, , and ,[14] From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000) 1028-1052. | Zbl | MR
and ,[15] Spectral Methods: Fundamentals in Single Domains. Springer (2006). | Zbl | MR
, , and ,[16] Second Order PDE's in Finite and Infinite Dimensions, A Probabilistic Approach, Lecture Notes in Mathematics 1762. Springer (2001). | Zbl | MR
,[17] Simulation of complex viscoelastic flows using Fokker-Planck equation: 3D FENE model. J. Non-Newtonian Fluid Mech. 122 (2004) 201-214. | Zbl
and ,[18] Simulation of dilute polymer solutions using a Fokker-Planck equation. Comput. Fluids 33 (2004) 687-696. | Zbl
and ,[19] On a class of elliptic operators with unbounded coefficients in convex domains. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004) 315-326. | Zbl | MR
and ,[20] FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4 (2005) 709-731. | Zbl | MR
, and ,[21] Spectral collocation methods and polar coordinate singularities. J. Comput. Phys. 96 (1991) 241-257. | Zbl | MR
, and ,[22] Stable Mappings and Their Singularities. Springer (1973). | Zbl | MR
and ,[23] Numerical analysis of micro-macro simulations of polymeric fluid flows: A simple case. Math. Mod. Meth. Appl. Sci. 12 (2002) 1205-1243. | Zbl | MR
, and ,[24] Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104 (1931). | Zbl
,[25] Weighted Sobolev Spaces, Teubner-Texte zur Mathematik. Teubner (1980). | Zbl | MR
,[26] Mathematical analysis of multi-scale models of complex fluids. Commun. Math. Sci. 5 (2007) 1-51. | Zbl | MR
and ,[27] A fast solver for Fokker-Planck equation applied to viscoelastic flows calculation: 2D FENE model. J. Comput. Phys. 189 (2003) 607-625. | Zbl | MR
and ,[28] On the best constant for Hardy’s inequality in
[29] A spectral method for polar coordinates. J. Comput. Phys. 120 (1995) 365-374. | Zbl | MR
and ,[30] Stochastic Processes in Polymeric Fluids. Springer (1996). | Zbl | MR
,[31] Efficient spectral Galerkin methods III: Polar and cylindrical geometries. SIAM J. Sci. Comput. 18 (1997) 1583-1604. | Zbl | MR
,[32] Navier-Stokes Equations: Theory and Numerical Analysis. Third edition, North-Holland, Amsterdam (1984). | Zbl | MR
,[33] Interpolation Theory, Function Spaces, Differential Operators. Second edition, Johan Ambrosius Barth, Heidelberg (1995). | Zbl | MR
,[34] A spectral model for two-dimensional incompressible fluid flow in a circular basin I. Mathematical formulation. J. Comput. Phys. 136 (1997) 100-114. | Zbl | MR
,Cité par Sources :