Voir la notice de l'article provenant de la source Numdam
In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number
@article{M2AN_2009__43_1_173_0, author = {Menza, Laurent Di}, title = {Numerical computation of solitons for optical systems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {173--208}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/m2an:2008044}, mrnumber = {2494799}, zbl = {1159.65070}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2008044/} }
TY - JOUR AU - Menza, Laurent Di TI - Numerical computation of solitons for optical systems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2009 SP - 173 EP - 208 VL - 43 IS - 1 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2008044/ DO - 10.1051/m2an:2008044 LA - en ID - M2AN_2009__43_1_173_0 ER -
%0 Journal Article %A Menza, Laurent Di %T Numerical computation of solitons for optical systems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2009 %P 173-208 %V 43 %N 1 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2008044/ %R 10.1051/m2an:2008044 %G en %F M2AN_2009__43_1_173_0
Menza, Laurent Di. Numerical computation of solitons for optical systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 1, pp. 173-208. doi : 10.1051/m2an:2008044. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2008044/
[1] Nodal solutions for a sublinear elliptic equation. Nonlinear Anal. 52 (2003) 219-237. | Zbl | MR
, and ,[2] Self-trapping of light beams and parametric solitons in diffractive quadratic media. Phys. Rev. A 52 (1995) 1670-1674.
, and ,[3] Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications. Phys. Rep. 370 (2002) 62-235. | Zbl | MR
, , and ,[4] Transparent and absorbing conditions for the Schrödinger equation in a bounded domain. Numer. Funct. Anal. Optim. 18 (1997) 759-775. | Zbl | MR
,[5] Singular ring solutions of critical and supercritical nonlinear Schrödinger equations. Physica D 18 (2007) 55-86. | Zbl | MR
, and ,[6] Optical solitons carrying orbital angular momentum. Phys. Rev. Lett. 79 (1997) 2450-2453.
and ,[7] Simultaneous solitary-wave solutions in a nonlinear parametric waveguide. Phys. Rev. E 54 (1996) 896-911.
, and ,[8] Nonradial solutions of a semilinear elliptic equation in two dimensions. J. Diff. Equ. 119 (1995) 533-558. | Zbl | MR
and ,[9] Norm estimates for radially symmetric solutions of semilinear elliptic equations. Trans. Amer. Math. Soc. 347 (1995) 1163-1199. | Zbl | MR
,[10] Uniqueness of positive solutions of
[11] Efficient numerical continuation and stability analysis of spatiotemporal quadratic optical solitons. SIAM J. Sci. Comput. 27 (2005) 759-773. | Zbl | MR
and ,[12] Spatiotemporal solitons in multidimensional optical media with a quadratic nonlinearity. Phys. Rev. E 56 (1997) 4725-4735.
, , , , and ,[13] Radial solutions of
[14] Vortex solitons for 2D focusing nonlinear Schrödinger equation. Diff. Int. Equ. 18 (2005) 431-450. | MR
,[15] Spherically-symmetric solutions of the Schrödinger-Newton equation. Class. Quant. Grav. 15 (1998) 2733-2742. | Zbl | MR
, and ,[16] Self-guided beams in diffractive
[17] The nonlinear Schrödinger equation, Self-focusing and wave collapse. AMS, Springer-Verlag (1999). | Zbl | MR
and ,[18] Light bullets in quadratic media with normal dispersion at the second harmonic. Phys. Rev. Lett. 90 (2003) 123902.
, and ,[19] Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983) 567-576. | Zbl | MR
,Cité par Sources :