Stabilization methods in relaxed micromagnetism
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 5, pp. 995-1017.

Voir la notice de l'article dans Numdam

The magnetization of a ferromagnetic sample solves a non-convex variational problem, where its relaxation by convexifying the energy density resolves relevant macroscopic information. The numerical analysis of the relaxed model has to deal with a constrained convex but degenerated, nonlocal energy functional in mixed formulation for magnetic potential u and magnetization 𝐦. In [C. Carstensen and A. Prohl, Numer. Math. 90 (2001) 65-99], the conforming P1-(P0) d -element in d=2,3 spatial dimensions is shown to lead to an ill-posed discrete problem in relaxed micromagnetism, and suboptimal convergence. This observation motivated a non-conforming finite element method which leads to a well-posed discrete problem, with solutions converging at optimal rate. In this work, we provide both an a priori and a posteriori error analysis for two stabilized conforming methods which account for inter-element jumps of the piecewise constant magnetization. Both methods converge at optimal rate; the new approach is applied to a macroscopic nonstationary ferromagnetic model [M. Kružík and A. Prohl, Adv. Math. Sci. Appl. 14 (2004) 665-681 - M. Kružík and T. Roubíček, Z. Angew. Math. Phys. 55 (2004) 159-182 ].

DOI : 10.1051/m2an:2005043
Classification : 65K10, 65N15, 65N30, 65N50, 73C50, 73S10
Mots-clés : micromagnetics, stationary, nonstationary, microstructure, relaxation, nonconvex minimization, degenerate convexity, finite elements methods, stabilization, penalization, a priori error estimates, a posteriori error estimates
@article{M2AN_2005__39_5_995_0,
     author = {Funken, Stefan A. and Prohl, Andreas},
     title = {Stabilization methods in relaxed micromagnetism},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {995--1017},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {5},
     year = {2005},
     doi = {10.1051/m2an:2005043},
     zbl = {1079.78031},
     mrnumber = {2178570},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005043/}
}
TY  - JOUR
AU  - Funken, Stefan A.
AU  - Prohl, Andreas
TI  - Stabilization methods in relaxed micromagnetism
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2005
SP  - 995
EP  - 1017
VL  - 39
IS  - 5
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005043/
DO  - 10.1051/m2an:2005043
LA  - en
ID  - M2AN_2005__39_5_995_0
ER  - 
%0 Journal Article
%A Funken, Stefan A.
%A Prohl, Andreas
%T Stabilization methods in relaxed micromagnetism
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2005
%P 995-1017
%V 39
%N 5
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005043/
%R 10.1051/m2an:2005043
%G en
%F M2AN_2005__39_5_995_0
Funken, Stefan A.; Prohl, Andreas. Stabilization methods in relaxed micromagnetism. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 5, pp. 995-1017. doi : 10.1051/m2an:2005043. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005043/

Cité par Sources :