Voir la notice de l'article provenant de la source Numdam
We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the
@article{M2AN_2005__39_4_781_0, author = {Merlet, Benoit and Pierre, Morgan}, title = {Moving mesh for the axisymmetric harmonic map flow}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {781--796}, publisher = {EDP-Sciences}, volume = {39}, number = {4}, year = {2005}, doi = {10.1051/m2an:2005034}, mrnumber = {2165679}, zbl = {1078.35008}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005034/} }
TY - JOUR AU - Merlet, Benoit AU - Pierre, Morgan TI - Moving mesh for the axisymmetric harmonic map flow JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2005 SP - 781 EP - 796 VL - 39 IS - 4 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005034/ DO - 10.1051/m2an:2005034 LA - en ID - M2AN_2005__39_4_781_0 ER -
%0 Journal Article %A Merlet, Benoit %A Pierre, Morgan %T Moving mesh for the axisymmetric harmonic map flow %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2005 %P 781-796 %V 39 %N 4 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005034/ %R 10.1051/m2an:2005034 %G en %F M2AN_2005__39_4_781_0
Merlet, Benoit; Pierre, Morgan. Moving mesh for the axisymmetric harmonic map flow. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 4, pp. 781-796. doi : 10.1051/m2an:2005034. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005034/
[1] Mesh optimization for singular axisymmetric harmonic maps from the disc into the sphere. Numer. Math. To appear. | Zbl | MR
and ,[2] Heat flows and relaxed energies for harmonic maps, in Nonlinear diffusion equations and their equilibrium states, 3 (Gregynog, 1989), Birkhäuser Boston, Boston, MA. Progr. Nonlinear Differential Equations Appl. 7 (1992) 99-109. | Zbl
, , and ,[3] Nonuniqueness for the heat flow of harmonic maps on the disk. Arch. Rational Mech. Anal. 161 (2002) 93-112. | Zbl
, and ,[4] Large solutions for harmonic maps in two dimensions. Comm. Math. Phys. 92 (1983) 203-215. | Zbl
and ,[5] Design and application of a gradient-weighted moving finite element code. I. In one dimension. SIAM J. Sci. Comput. 19 (1998) 728-765. | Zbl
and ,[6] Heat flow and boundary value problem for harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 363-395. | mathdoc-id | Zbl | EuDML
,[7] Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86 (1964) 109-160. | Zbl
and ,[8] Uniqueness for the harmonic map flow from surfaces to general targets. Comment. Math. Helv. 70 (1995) 310-338. | Zbl | EuDML
,[9] Uniqueness for the harmonic map flow in two dimensions. Calc. Var. Partial Differential Equations 3 (1995) 95-105. | Zbl
,[10] A new moving mesh algorithm for the finite element solution of variational problems. SIAM J. Numer. Anal. 35 (1998) 1416-1438. | Zbl
and ,[11] Weak BV convergence of moving finite elements for singular axisymmetric harmonic maps. SIAM J. Numer. Anal. To appear. | Zbl | MR
,[12] Algorithms and consistent approximations, Optimization, Applied Mathematical Sciences 124 (1997), Springer-Verlag, New York. | Zbl | MR
,[13] On singularities of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom. 3 (1995) 297-315. | Zbl
,[14] Minimum energy triangulations for elliptic problems. Comput. Methods Appl. Mech. Engrg. 84 (1990) 257-274. | Zbl
and ,[15] The evolution of harmonic maps, in Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990). Math. Soc. Japan (1991) 1197-1203. | Zbl
,[16] Reverse bubbling and nonuniqueness in the harmonic map flow. Internat. Math. Res. Notices 10 (2002) 505-520. | Zbl
,Cité par Sources :