Voir la notice de l'article provenant de la source Numdam
The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on
@article{M2AN_2005__39_3_477_0, author = {Bresch, Didier and Gisclon, Marguerite and Lin, Chi-Kun}, title = {An example of low {Mach} {(Froude)} number effects for compressible flows with nonconstant density (height) limit}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {477--486}, publisher = {EDP-Sciences}, volume = {39}, number = {3}, year = {2005}, doi = {10.1051/m2an:2005026}, mrnumber = {2157146}, zbl = {1080.35065}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005026/} }
TY - JOUR AU - Bresch, Didier AU - Gisclon, Marguerite AU - Lin, Chi-Kun TI - An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2005 SP - 477 EP - 486 VL - 39 IS - 3 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005026/ DO - 10.1051/m2an:2005026 LA - en ID - M2AN_2005__39_3_477_0 ER -
%0 Journal Article %A Bresch, Didier %A Gisclon, Marguerite %A Lin, Chi-Kun %T An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2005 %P 477-486 %V 39 %N 3 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005026/ %R 10.1051/m2an:2005026 %G en %F M2AN_2005__39_3_477_0
Bresch, Didier; Gisclon, Marguerite; Lin, Chi-Kun. An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Low Mach Number Flows Conference, Tome 39 (2005) no. 3, pp. 477-486. doi : 10.1051/m2an:2005026. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005026/
[1] Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Submitted (2004). | Zbl
,[2] Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys. 238 (2003) 211-223. | Zbl
and ,[3] Rotating fluids in a cylinder. Discrete Contin. Dynam. Systems Ser. A 11 (2004) 47-82. | Zbl
, and ,[4] On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations 28 (2003) 1009-1037. | Zbl
, and ,[5] Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125-148. | Zbl
, , and ,[6] Fluides légèrement compressibles et limite incompressible. Séminaire École Polytechnique (France), Exposé No. III (2000). | Zbl | MR | mathdoc-id
,[7] Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461-471. | Zbl
, , and ,[8] Résultats récents sur la limite incompressible. Séminaire Bourbaki (France), No. 926 (2003). | MR | mathdoc-id
,[9] Derivation of viscous Saint-Venant system for laminar Shallow water; Numerical results. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102. | Zbl
and ,[10] Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477-498. | Zbl
,[11] A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493-1515. | Zbl
and ,[12] Global well-posedness for a models of shallow water in a basin with a varying bottom. Indiana Univ. Math. J. 45 (1996) 479-510. | Zbl
, and ,[13] Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford (1998). | Zbl | MR
,[14] Incompressible limit for a viscous compressible fluids. J. Math. Pures Appl. 77 (1998) 585-627. | Zbl
and ,[15] The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61-90. | Zbl
and ,[16] The incompressible limit of the non-isentropic Euler equations, in Séminaire Équations aux Dérivées Partielles, École Polytechnique (2001). | MR
and ,[17] Justification of the shallow water limit for a rigid lid with bottom topography. Theor. Comp. Fluid Dyn. 9 (1997) 311-324. | Zbl
,[18] Geophysical fluid dynamics. Berlin Heidelberg-New York, Springer-Verlag (1987). | Zbl
,Cité par Sources :