An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Low Mach Number Flows Conference, Tome 39 (2005) no. 3, pp. 477-486.

Voir la notice de l'article provenant de la source Numdam

The purpose of this work is to study an example of low Mach (Froude) number limit of compressible flows when the initial density (height) is almost equal to a function depending on x. This allows us to connect the viscous shallow water equation and the viscous lake equations. More precisely, we study this asymptotic with well prepared data in a periodic domain looking at the influence of the variability of the depth. The result concerns weak solutions. In a second part, we discuss the general low Mach number limit for standard compressible flows given in P.-L. Lions’ book that means with constant viscosity coefficients.

DOI : 10.1051/m2an:2005026
Classification : 35Q30
Mots-clés : compressible flows, Navier-Stokes equations, low Mach (Froude) number limit shallow-water equations, lake equations, nonconstant density
@article{M2AN_2005__39_3_477_0,
     author = {Bresch, Didier and Gisclon, Marguerite and Lin, Chi-Kun},
     title = {An example of low {Mach} {(Froude)} number effects for compressible flows with nonconstant density (height) limit},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {477--486},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {3},
     year = {2005},
     doi = {10.1051/m2an:2005026},
     mrnumber = {2157146},
     zbl = {1080.35065},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005026/}
}
TY  - JOUR
AU  - Bresch, Didier
AU  - Gisclon, Marguerite
AU  - Lin, Chi-Kun
TI  - An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2005
SP  - 477
EP  - 486
VL  - 39
IS  - 3
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005026/
DO  - 10.1051/m2an:2005026
LA  - en
ID  - M2AN_2005__39_3_477_0
ER  - 
%0 Journal Article
%A Bresch, Didier
%A Gisclon, Marguerite
%A Lin, Chi-Kun
%T An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2005
%P 477-486
%V 39
%N 3
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005026/
%R 10.1051/m2an:2005026
%G en
%F M2AN_2005__39_3_477_0
Bresch, Didier; Gisclon, Marguerite; Lin, Chi-Kun. An example of low Mach (Froude) number effects for compressible flows with nonconstant density (height) limit. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Low Mach Number Flows Conference, Tome 39 (2005) no. 3, pp. 477-486. doi : 10.1051/m2an:2005026. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005026/

[1] T. Alazard, Incompressible limit of the non-isentropic Euler equations with solid wall boundary conditions. Submitted (2004). | Zbl

[2] D. Bresch and B. Desjardins, Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Comm. Math. Phys. 238 (2003) 211-223. | Zbl

[3] D. Bresch, B. Desjardins and D. Gérard-Varet, Rotating fluids in a cylinder. Discrete Contin. Dynam. Systems Ser. A 11 (2004) 47-82. | Zbl

[4] D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems. Comm. Partial Differential Equations 28 (2003) 1009-1037. | Zbl

[5] D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125-148. | Zbl

[6] R. Danchin, Fluides légèrement compressibles et limite incompressible. Séminaire École Polytechnique (France), Exposé No. III (2000). | Zbl | MR | mathdoc-id

[7] B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461-471. | Zbl

[8] I. Gallagher, Résultats récents sur la limite incompressible. Séminaire Bourbaki (France), No. 926 (2003). | MR | mathdoc-id

[9] J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar Shallow water; Numerical results. Discrete Contin. Dynam. Systems Ser. B 1 (2001) 89-102. | Zbl

[10] E. Grenier, Oscillatory perturbations of the Navier-Stokes equations. J. Math. Pures Appl. 76 (1997) 477-498. | Zbl

[11] C.D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14 (2001) 1493-1515. | Zbl

[12] C.D. Levermore, M. Oliver and E.S. Titi, Global well-posedness for a models of shallow water in a basin with a varying bottom. Indiana Univ. Math. J. 45 (1996) 479-510. | Zbl

[13] P.-L. Lions, Mathematical topics in fluid dynamics, Vol. 2, Compressible models. Oxford Science Publication, Oxford (1998). | Zbl | MR

[14] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluids. J. Math. Pures Appl. 77 (1998) 585-627. | Zbl

[15] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61-90. | Zbl

[16] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations, in Séminaire Équations aux Dérivées Partielles, École Polytechnique (2001). | MR

[17] M. Oliver, Justification of the shallow water limit for a rigid lid with bottom topography. Theor. Comp. Fluid Dyn. 9 (1997) 311-324. | Zbl

[18] J. Pedlosky, Geophysical fluid dynamics. Berlin Heidelberg-New York, Springer-Verlag (1987). | Zbl

Cité par Sources :