Voir la notice de l'article provenant de la source Numdam
The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in
Nicaise, Serge 1 ; Soualem, Nadir
@article{M2AN_2005__39_2_319_0, author = {Nicaise, Serge and Soualem, Nadir}, title = {A posteriori error estimates for a nonconforming finite element discretization of the heat equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {319--348}, publisher = {EDP-Sciences}, volume = {39}, number = {2}, year = {2005}, doi = {10.1051/m2an:2005009}, mrnumber = {2143951}, zbl = {1078.65079}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005009/} }
TY - JOUR AU - Nicaise, Serge AU - Soualem, Nadir TI - A posteriori error estimates for a nonconforming finite element discretization of the heat equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2005 SP - 319 EP - 348 VL - 39 IS - 2 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005009/ DO - 10.1051/m2an:2005009 LA - en ID - M2AN_2005__39_2_319_0 ER -
%0 Journal Article %A Nicaise, Serge %A Soualem, Nadir %T A posteriori error estimates for a nonconforming finite element discretization of the heat equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2005 %P 319-348 %V 39 %N 2 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005009/ %R 10.1051/m2an:2005009 %G en %F M2AN_2005__39_2_319_0
Nicaise, Serge; Soualem, Nadir. A posteriori error estimates for a nonconforming finite element discretization of the heat equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 2, pp. 319-348. doi : 10.1051/m2an:2005009. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005009/
[1] A priori and a posteriori error analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl
, and ,[2] The maximum angle condition for mixed and non-conforming elements, Application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999) 18-36. | Zbl
and ,[3] Anisotropic finite elements: Local estimates and applications. Adv. Numer. Math. Teubner, Stuttgart (1999). | Zbl | MR
,[4] The inf-sup condition for some low order elements on anisotropic meshes. Calcolo 41 (2004) 89-113. | Zbl
and ,[5] A non-conforming finite element method with anisotropic mesh grading for the stokes problem in domains with edges. IMA J. Numer. Anal. 21 (2001) 843-856. | Zbl
, and ,[6] A posteriori analysis of the finite element discretization of some parabolic problem. Preprint Laboratoire J.-L. Lions 01045, Université Paris 6 (2001). | Zbl
, and ,[7] A posteriori analysis of the finite element discretization of a nonlinear parabolic equation. (2004) (to appear).
, and ,[8] Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425-438. | Zbl
and ,[9] A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: M2AN 38 (2004) 437-455. | Zbl | mathdoc-id
and ,[10] Single step methods for inhomogeneous linear differential equations in banach space. RAIRO Anal. Numér. 16 (1982) 5-26. | mathdoc-id | Zbl | EuDML
, and ,[11] The finite element method for elliptic problems. North Holland (1996). | Zbl | MR
,[12] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 2 (1975) 77-84. | mathdoc-id | Zbl | EuDML
,[13] A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations. Math. Models Methods Appl. Sci. 14 (2004) 1297-1341. | Zbl
, and ,[14] A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 385-400. | mathdoc-id | Zbl | EuDML
, , and ,[15] Finite elements methods for Navier-Stokes equations, Theory and Algorithms. Springer Series in Computational Mathematics, Berlin (1986). | Zbl
and ,[16] An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277-291. | Zbl
, and ,[17] Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223-237. | Zbl
,[18] An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24 (2003) 1328-1355. | Zbl
,[19] Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl
and ,[20] A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996). | Zbl
,[21] Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695-713. | mathdoc-id | Zbl | EuDML
,[22] A posteriori error estimates for finite element discretization of the heat equation. Calcolo 40 (2003) 195-212. | Zbl
,Cité par Sources :