Voir la notice de l'article provenant de la source Numdam
We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation,
@article{M2AN_2005__39_1_183_0, author = {Carayol, Quentin and Collino, Francis}, title = {Error estimates in the fast multipole method for scattering problems. {Part} 2 : truncation of the {Gegenbauer} series}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {183--221}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/m2an:2005008}, mrnumber = {2136205}, zbl = {1087.33007}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005008/} }
TY - JOUR AU - Carayol, Quentin AU - Collino, Francis TI - Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2005 SP - 183 EP - 221 VL - 39 IS - 1 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005008/ DO - 10.1051/m2an:2005008 LA - en ID - M2AN_2005__39_1_183_0 ER -
%0 Journal Article %A Carayol, Quentin %A Collino, Francis %T Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2005 %P 183-221 %V 39 %N 1 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005008/ %R 10.1051/m2an:2005008 %G en %F M2AN_2005__39_1_183_0
Carayol, Quentin; Collino, Francis. Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 39 (2005) no. 1, pp. 183-221. doi : 10.1051/m2an:2005008. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2005008/
[1] Handbook of Mathematical Functions. Dover, New-York (1964).
and ,[2] Analysis of the truncation errors in the fast multipole method for scattering problems. J. Comput. Appl. Math. 115 (2000) 23-33. | Zbl
and ,[3] Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal. 150 (1997) 356-382. | Zbl
, and ,[4] Higher transcendental Functions. McGraw-Hill (1953). | MR
,[5] Développement et analyse d'une méthode multipôle multiniveau pour l'électromagnétisme. Ph.D. thesis, Université Paris VI Pierre et Marie Curie, rue Jussieu 75005 Paris (2002).
,[6] Error estimates in the fast multipole method for scattering problems. part 1: Truncation of the jacobi-anger series. ESAIM: M2AN 38 (2004) 371-394. | Zbl | mathdoc-id
and ,[7] Uniform asymptotic formulae for functions with transition points. Trans. AMS 68 (1950) 224-257. | Zbl
,[8] Fast and Efficient Algorithms in Computational Electromagnetics. Artech House (2001).
, , and ,[9] The Fast Multipole Method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine 35 (1993) 7-12.
, and ,[10] Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag 93 (1992). | Zbl | MR
and ,[11] The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98-128 (electronic). | Zbl
,[12] The fast multipole method: Numerical implementation. J. Comput. Physics 160 (2000) 196-240. | Zbl
,[13] Efficient fast multipole method for low frequency scattering. J. Comput. Physics 197 (2004) 341-363. | Zbl
and ,[14] Accuracy of fast multipole methods for maxwell's equations. IEEE Comput. Sci. Engrg. 5 (1998) 48-56.
and ,[15] Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16 (1995) 865-897. | Zbl
and ,[16] Table of integrals, series, and products, 5th edition. Academic Press (1994). | Zbl | MR
, ,[17] Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem. SIAM J. Numer. Anal. 36 (1999) 906-921 (electronic). | Zbl
, and ,[18] Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials. Applicable Anal. 14 (1982/83) 237-240. | Zbl
,[19] Corrigendum: “Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials” [Appl. Anal. 14 (1982/83) 237-240; MR 84k:26017]. Appl. Anal. 50 (1993) 47. | Zbl
,[20] Acoustic and Electromagnetic Equation. Integral Representation for Harmonic Problems. Springer-Verlag 144 (2001). | Zbl | MR
,[21] Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems. BIT 36 (1996) 333-358. | Zbl
,[22] A treatise on the theory of Bessel functions. Cambridge University Press (1966). | Zbl | MR | JFM
,Cité par Sources :