Voir la notice de l'article dans Numdam
We consider a posteriori error estimators that can be applied to anisotropic tetrahedral finite element meshes, i.e. meshes where the aspect ratio of the elements can be arbitrarily large. Two kinds of Zienkiewicz-Zhu (ZZ) type error estimators are derived which originate from different backgrounds. In the course of the analysis, the first estimator turns out to be a special case of the second one, and both estimators can be expressed using some recovered gradient. The advantage of keeping two different analyses of the estimators is that they allow different and partially novel investigations and results. Both rigorous analytical approaches yield the equivalence of each ZZ error estimator to a known residual error estimator. Thus reliability and efficiency of the ZZ error estimation is obtained. The anisotropic discretizations require analytical tools beyond the standard isotropic methods. Particular attention is paid to the requirements on the anisotropic mesh. The analysis is complemented and confirmed by extensive numerical examples. They show that good results can be obtained for a large class of problems, demonstrated exemplary for the Poisson problem and a singularly perturbed reaction diffusion problem.
Mots-clés : anisotropic mesh, error estimator, Zienkiewicz-Zhu estimator, recovered gradient
Kunert, Gerd  ; Nicaise, Serge 1
@article{M2AN_2003__37_6_1013_0, author = {Kunert, Gerd and Nicaise, Serge}, title = {Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1013--1043}, publisher = {EDP-Sciences}, volume = {37}, number = {6}, year = {2003}, doi = {10.1051/m2an:2003065}, zbl = {1077.65114}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003065/} }
TY - JOUR AU - Kunert, Gerd AU - Nicaise, Serge TI - Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2003 SP - 1013 EP - 1043 VL - 37 IS - 6 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003065/ DO - 10.1051/m2an:2003065 LA - en ID - M2AN_2003__37_6_1013_0 ER -
%0 Journal Article %A Kunert, Gerd %A Nicaise, Serge %T Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2003 %P 1013-1043 %V 37 %N 6 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003065/ %R 10.1051/m2an:2003065 %G en %F M2AN_2003__37_6_1013_0
Kunert, Gerd; Nicaise, Serge. Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 6, pp. 1013-1043. doi : 10.1051/m2an:2003065. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003065/
Cité par Sources :