We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also estimates the error for the Lagrange multiplier.
@article{M2AN_2003__37_6_991_0, author = {Belhachmi, Zakaria}, title = {A posteriori error estimates for the $3${D} stabilized {Mortar} finite element method applied to the {Laplace} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {991--1011}, publisher = {EDP-Sciences}, volume = {37}, number = {6}, year = {2003}, doi = {10.1051/m2an:2003064}, zbl = {1076.65092}, mrnumber = {2026405}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003064/} }
TY - JOUR AU - Belhachmi, Zakaria TI - A posteriori error estimates for the $3$D stabilized Mortar finite element method applied to the Laplace equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2003 SP - 991 EP - 1011 VL - 37 IS - 6 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003064/ DO - 10.1051/m2an:2003064 LA - en ID - M2AN_2003__37_6_991_0 ER -
%0 Journal Article %A Belhachmi, Zakaria %T A posteriori error estimates for the $3$D stabilized Mortar finite element method applied to the Laplace equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2003 %P 991-1011 %V 37 %N 6 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003064/ %R 10.1051/m2an:2003064 %G en %F M2AN_2003__37_6_991_0
Belhachmi, Zakaria. A posteriori error estimates for the $3$D stabilized Mortar finite element method applied to the Laplace equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 6, pp. 991-1011. doi : 10.1051/m2an:2003064. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003064/
Cité par Sources :