Numerical resolution of an “unbalanced” mass transport problem
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 5, pp. 851-868.

Voir la notice de l'article dans Numdam

We introduce a modification of the Monge-Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

DOI : 10.1051/m2an:2003058
Classification : 35J60, 65K10, 78A05, 90B99
Mots-clés : Monge-Kantorovitch problem, Wasserstein distance, augmented lagrangian method
@article{M2AN_2003__37_5_851_0,
     author = {Benamou, Jean-David},
     title = {Numerical resolution of an {\textquotedblleft}unbalanced{\textquotedblright} mass transport problem},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {851--868},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {5},
     year = {2003},
     doi = {10.1051/m2an:2003058},
     zbl = {1037.65063},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003058/}
}
TY  - JOUR
AU  - Benamou, Jean-David
TI  - Numerical resolution of an “unbalanced” mass transport problem
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2003
SP  - 851
EP  - 868
VL  - 37
IS  - 5
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003058/
DO  - 10.1051/m2an:2003058
LA  - en
ID  - M2AN_2003__37_5_851_0
ER  - 
%0 Journal Article
%A Benamou, Jean-David
%T Numerical resolution of an “unbalanced” mass transport problem
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2003
%P 851-868
%V 37
%N 5
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003058/
%R 10.1051/m2an:2003058
%G en
%F M2AN_2003__37_5_851_0
Benamou, Jean-David. Numerical resolution of an “unbalanced” mass transport problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 5, pp. 851-868. doi : 10.1051/m2an:2003058. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003058/

Cité par Sources :