Voir la notice de l'article provenant de la source Numdam
We study the gradient flow for the total variation functional, which arises in image processing and geometric applications. We propose a variational inequality weak formulation for the gradient flow, and establish well-posedness of the problem by the energy method. The main idea of our approach is to exploit the relationship between the regularized gradient flow (characterized by a small positive parameter
@article{M2AN_2003__37_3_533_0, author = {Feng, Xiaobing and Prohl, Andreas}, title = {Analysis of total variation flow and its finite element approximations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {533--556}, publisher = {EDP-Sciences}, volume = {37}, number = {3}, year = {2003}, doi = {10.1051/m2an:2003041}, mrnumber = {1994316}, zbl = {1050.35004}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003041/} }
TY - JOUR AU - Feng, Xiaobing AU - Prohl, Andreas TI - Analysis of total variation flow and its finite element approximations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2003 SP - 533 EP - 556 VL - 37 IS - 3 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003041/ DO - 10.1051/m2an:2003041 LA - en ID - M2AN_2003__37_3_533_0 ER -
%0 Journal Article %A Feng, Xiaobing %A Prohl, Andreas %T Analysis of total variation flow and its finite element approximations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2003 %P 533-556 %V 37 %N 3 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003041/ %R 10.1051/m2an:2003041 %G en %F M2AN_2003__37_3_533_0
Feng, Xiaobing; Prohl, Andreas. Analysis of total variation flow and its finite element approximations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 3, pp. 533-556. doi : 10.1051/m2an:2003041. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003041/
[1] Functions of bounded variation and free discontinuity problems. The Clarendon Press Oxford University Press, New York (2000). | Zbl | MR
, and ,[2] The Dirichlet problem for the total variation flow. J. Funct. Anal. 180 (2001) 347-403. | Zbl
, , and ,[3] Minimizing total variation flow. Differential Integral Equations 14 (2001) 321-360. | Zbl
, , and ,[4] Some qualitative properties for the total variation flow. J. Funct. Anal. 188 (2002) 516-547. | Zbl
, , and ,[5] The total variation flow in
[6] The mathematical theory of finite element methods. Springer-Verlag, New York, 2nd ed. (2002). | Zbl | MR
and ,[7] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam, North-Holland Math. Stud., No. 5. Notas de Matemática (50) (1973). | Zbl | MR
,[8] Regularization by functions of bounded variation and applications to image enhancement. Appl. Math. Optim. 40 (1999) 229-257. | Zbl
, and ,[9] Image recovery via total variation minimization and related problems. Numer. Math. 76 (1997) 167-188. | Zbl
and ,[10] On the role of the BV image model in image restoration. Tech. Report CAM 02-14, Department of Mathematics, UCLA (2002). | Zbl | MR
and ,[11] A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20 (1999) 1964-1977 (electronic). | Zbl
, and ,[12] The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam, Stud. Math. Appl. 4 (1978). | Zbl | MR
,[13] Generation of semi-groups of nonlinear transformations on general Banach spaces. Amer. J. Math. 93 (1971) 265-298. | Zbl
and ,[14] Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34 (1997) 1779-1791. | Zbl
and ,[15] Boundary value problems for surfaces of prescribed mean curvature. J. Math. Pures Appl. 58 (1979) 75-109. | Zbl
,[16] Evolutionary surfaces of prescribed mean curvature. J. Differential Equations 36 (1980) 139-172. | Zbl
,[17] Elliptic partial differential equations of second order. Springer-Verlag, Berlin (2001). Reprint of the 1998 ed. | Zbl | MR
and ,[18] Minimal surfaces and functions of bounded variation. Birkhäuser Verlag, Basel (1984). | Zbl | MR
,[19] An evolution problem for linear growth functionals. Comm. Partial Differential Equations 19 (1994) 1879-1907. | Zbl
and ,[20] Error estimates for a finite element approximation of a minimal surface. Math. Comp. 29 (1975) 343-349. | Zbl
and ,[21] Pseudosolutions of the time-dependent minimal surface problem. J. Differential Equations 30 (1978) 340-364. | Zbl
and ,[22] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod (1969). | Zbl | MR
,[23] Some asymptotic error estimates for finite element approximation of minimal surfaces. RAIRO Anal. Numér. 11 (1977) 181-196. | Zbl | mathdoc-id
,[24] Nonlinear total variation based noise removal algorithms. Phys. D 60 (1992) 259-268. | Zbl
, and ,[25] Compact sets in the space
[26] Applications to nonlinear partial differential equations and Hamiltonian systems, in Variational methods. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics (Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics), Vol. 34. Springer-Verlag, Berlin, 3rd ed. (2000). | Zbl | MR
,Cité par Sources :