Persistence and bifurcation analysis on a predator-prey system of holling type
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 2, pp. 339-344.

Voir la notice de l'article dans Numdam

We present a Gause type predator-prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf-bifurcation.

DOI : 10.1051/m2an:2003029
Classification : 34D23, 34D45, 92D25
Mots-clés : persistance, bifurcation, stability, holling type II
@article{M2AN_2003__37_2_339_0,
     author = {Mukherjee, Debasis},
     title = {Persistence and bifurcation analysis on a predator-prey system of holling type},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {339--344},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     doi = {10.1051/m2an:2003029},
     zbl = {1029.34040},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003029/}
}
TY  - JOUR
AU  - Mukherjee, Debasis
TI  - Persistence and bifurcation analysis on a predator-prey system of holling type
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2003
SP  - 339
EP  - 344
VL  - 37
IS  - 2
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003029/
DO  - 10.1051/m2an:2003029
LA  - en
ID  - M2AN_2003__37_2_339_0
ER  - 
%0 Journal Article
%A Mukherjee, Debasis
%T Persistence and bifurcation analysis on a predator-prey system of holling type
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2003
%P 339-344
%V 37
%N 2
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003029/
%R 10.1051/m2an:2003029
%G en
%F M2AN_2003__37_2_339_0
Mukherjee, Debasis. Persistence and bifurcation analysis on a predator-prey system of holling type. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 2, pp. 339-344. doi : 10.1051/m2an:2003029. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003029/

Cité par Sources :