Green's function pointwise estimates for the modified Lax-Friedrichs scheme
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 1, pp. 1-39.
Voir la notice de l'article dans Numdam
The aim of this paper is to find estimates of the Green's function of stationary discrete shock profiles and discrete boundary layers of the modified Lax-Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [27] in the continuous viscous setting.
DOI :
10.1051/m2an:2003022
Classification :
35L65
Mots-clés : linear stability, discrete shock profiles, Laplace transform
Mots-clés : linear stability, discrete shock profiles, Laplace transform
@article{M2AN_2003__37_1_1_0, author = {Godillon, Pauline}, title = {Green's function pointwise estimates for the modified {Lax-Friedrichs} scheme}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1--39}, publisher = {EDP-Sciences}, volume = {37}, number = {1}, year = {2003}, doi = {10.1051/m2an:2003022}, zbl = {1038.35036}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003022/} }
TY - JOUR AU - Godillon, Pauline TI - Green's function pointwise estimates for the modified Lax-Friedrichs scheme JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2003 SP - 1 EP - 39 VL - 37 IS - 1 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003022/ DO - 10.1051/m2an:2003022 LA - en ID - M2AN_2003__37_1_1_0 ER -
%0 Journal Article %A Godillon, Pauline %T Green's function pointwise estimates for the modified Lax-Friedrichs scheme %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2003 %P 1-39 %V 37 %N 1 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003022/ %R 10.1051/m2an:2003022 %G en %F M2AN_2003__37_1_1_0
Godillon, Pauline. Green's function pointwise estimates for the modified Lax-Friedrichs scheme. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 1, pp. 1-39. doi : 10.1051/m2an:2003022. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003022/
Cité par Sources :