Discontinuous Galerkin and the Crouzeix-Raviart element : application to elasticity
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 1, pp. 63-72.

Voir la notice de l'article provenant de la source Numdam

We propose a discontinuous Galerkin method for linear elasticity, based on discontinuous piecewise linear approximation of the displacements. We show optimal order a priori error estimates, uniform in the incompressible limit, and thus locking is avoided. The discontinuous Galerkin method is closely related to the non-conforming Crouzeix-Raviart (CR) element, which in fact is obtained when one of the stabilizing parameters tends to infinity. In the case of the elasticity operator, for which the CR element is not stable in that it does not fulfill a discrete Korn's inequality, the discontinuous framework naturally suggests the appearance of (weakly consistent) stabilization terms. Thus, a stabilized version of the CR element, which does not lock, can be used for both compressible and (nearly) incompressible elasticity. Numerical results supporting these assertions are included. The analysis directly extends to higher order elements and three spatial dimensions.

DOI : 10.1051/m2an:2003020
Classification : 65N30, 74B05
Mots-clés : Crouzeix-Raviart element, Nitsche's method, discontinuous Galerkin, incompressible elasticity
@article{M2AN_2003__37_1_63_0,
     author = {Hansbo, Peter and Larson, Mats G.},
     title = {Discontinuous {Galerkin} and the {Crouzeix-Raviart} element : application to elasticity},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {63--72},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {1},
     year = {2003},
     doi = {10.1051/m2an:2003020},
     zbl = {1137.65431},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003020/}
}
TY  - JOUR
AU  - Hansbo, Peter
AU  - Larson, Mats G.
TI  - Discontinuous Galerkin and the Crouzeix-Raviart element : application to elasticity
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2003
SP  - 63
EP  - 72
VL  - 37
IS  - 1
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003020/
DO  - 10.1051/m2an:2003020
LA  - en
ID  - M2AN_2003__37_1_63_0
ER  - 
%0 Journal Article
%A Hansbo, Peter
%A Larson, Mats G.
%T Discontinuous Galerkin and the Crouzeix-Raviart element : application to elasticity
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2003
%P 63-72
%V 37
%N 1
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003020/
%R 10.1051/m2an:2003020
%G en
%F M2AN_2003__37_1_63_0
Hansbo, Peter; Larson, Mats G. Discontinuous Galerkin and the Crouzeix-Raviart element : application to elasticity. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 37 (2003) no. 1, pp. 63-72. doi : 10.1051/m2an:2003020. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an:2003020/

[1] D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | Zbl

[2] G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31 (1977) 45-59. | Zbl

[3] S.C. Brenner and L. Sung, Linear finite element methods for planar linear elasticity. Math. Comp. 59 (1992) 321-338. | Zbl

[4] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer (1997). | Zbl | MR

[5] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Sér. Rouge 7 (1973) 33-75. | Zbl | mathdoc-id

[6] R.S. Falk, Nonconforming finite element methods for the equations of linear elasticity. Math. Comp. 57 (1991) 529-550. | Zbl

[7] M. Fortin and M. Soulie, A nonconforming piecewise quadratic finite element on triangles. Internat. J. Numer. Methods Engrg. 19 (1983) 505-520. | Zbl

[8] P. Hansbo and M.G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche's method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 1895-1908. | Zbl

[9] P. Hansbo and M.G. Larson, A simple nonconforming bilinear element for the elasticity problem. Trends in Computational Structural Mechanics, W.A. Wall et al. Eds., CIMNE (2001) 317-327.

[10] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice-Hall, New Jersey (1987). | Zbl | MR

[11] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | Zbl

[12] R. Rannacher and S. Turek, A simple nonconforming quadrilateral Stokes element. Numer. Methods Partial Differential Equations 8 (1992) 97-111. | Zbl

[13] F. Thomasset, Implementation of Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, New York (1981). | Zbl | MR

[14] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | Zbl

[15] B. Cockburn, K.E. Karniadakis and C.-W. Shu Eds., Discontinuous Galerkin Methods: Theory, Computation, and Applications. Lecture Notes Comput. Sci. Eng., Springer Verlag (1999). | Zbl | MR

  • Guo, Yuling; Wang, Zhongqing; Zhang, Chao A robust mapping spectral method for elastic equations in curved fan-shaped domains, Applied Numerical Mathematics, Volume 211 (2025), pp. 144-157 | DOI:10.1016/j.apnum.2025.01.008 | Zbl:8018670
  • Droniou, Jérôme; Haidar, Ali; Masson, Roland Analysis of a VEM-fully discrete polytopal scheme with bubble stabilisation for contact mechanics with Tresca friction, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 59 (2025) no. 2, pp. 1043-1074 | DOI:10.1051/m2an/2025013 | Zbl:8028647
  • Dell'Accio, Francesco; Guessab, Allal; Milovanović, Gradimir V.; Nudo, Federico Reconstructing algebraic functions from a nonconforming exponential weighted enriched finite element, Journal of Computational and Applied Mathematics, Volume 466 (2025), p. 12 (Id/No 116603) | DOI:10.1016/j.cam.2025.116603 | Zbl:8031354
  • Laaziri, Mohamed; Masson, Roland VEM-Nitsche fully discrete polytopal scheme for frictionless contact-mechanics, SIAM Journal on Numerical Analysis, Volume 63 (2025) no. 1, pp. 81-102 | DOI:10.1137/24m1660218 | Zbl:7972553
  • Li, Hongpeng; Li, Xu; Rui, Hongxing Analysis of a \(\boldsymbol{P}_1 \oplus \boldsymbol{RT}_0\) finite element method for linear elasticity with Dirichlet and mixed boundary conditions, Advances in Computational Mathematics, Volume 50 (2024) no. 1, p. 35 (Id/No 13) | DOI:10.1007/s10444-024-10107-w | Zbl:1543.65195
  • Nudo, Federico Two one-parameter families of nonconforming enrichments of the Crouzeix-Raviart finite element, Applied Numerical Mathematics, Volume 203 (2024), pp. 160-172 | DOI:10.1016/j.apnum.2024.05.023 | Zbl:1543.65197
  • Droniou, Jérôme; Enchéry, Guillaume; Faille, Isabelle; Haidar, Ali; Masson, Roland A bubble VEM-fully discrete polytopal scheme for mixed-dimensional poromechanics with frictional contact at matrix-fracture interfaces, Computer Methods in Applied Mechanics and Engineering, Volume 422 (2024), p. 25 (Id/No 116838) | DOI:10.1016/j.cma.2024.116838 | Zbl:1539.74255
  • Chung, Seung Whan; Choi, Youngsoo; Roy, Pratanu; Moore, Thomas; Roy, Thomas; Lin, Tiras Y.; Nguyen, Du T.; Hahn, Christopher; Duoss, Eric B.; Baker, Sarah E. Train small, model big: scalable physics simulators via reduced order modeling and domain decomposition, Computer Methods in Applied Mechanics and Engineering, Volume 427 (2024), p. 26 (Id/No 117041) | DOI:10.1016/j.cma.2024.117041 | Zbl:1550.65244
  • Dell'Accio, Francesco; Guessab, Allal; Nudo, Federico New quadratic and cubic polynomial enrichments of the Crouzeix-Raviart finite element, Computers Mathematics with Applications, Volume 170 (2024), pp. 204-212 | DOI:10.1016/j.camwa.2024.06.019 | Zbl:7899261
  • Guo, Jun; Shi, Yanchao; Luo, Weihua A comparison of two nonconforming finite element methods for linear three-field poroelasticity, Demonstratio Mathematica, Volume 57 (2024), p. 19 (Id/No 20240073) | DOI:10.1515/dema-2024-0073 | Zbl:7976255
  • Zhang, Shuiqiang; Gong, Haiyang; Xu, Zikang; Zheng, Yuqing; Wang, Yongli; Chang, Lin A locking-free and accurate collocation method for nearly incompressible and incompressible plane elasticity, Engineering Analysis with Boundary Elements, Volume 162 (2024), pp. 268-283 | DOI:10.1016/j.enganabound.2024.02.003 | Zbl:1554.74202
  • Zhang, Xuqing; Yang, Yidu; Bi, Hai Stabilized two-grid discretizations of locking free for the elasticity eigenvalue problem, Journal of Applied Analysis and Computation, Volume 14 (2024) no. 4, pp. 1831-1853 | DOI:10.11948/20220048 | Zbl:1547.65171
  • Zeng, Yuping; Cai, Mingchao; Zhong, Liuqiang A coupled method combining Crouzeix-Raviart nonconforming and node conforming finite element spaces for Biot consolidation model, Journal of Computational Mathematics, Volume 42 (2024) no. 4, pp. 911-931 | DOI:10.4208/jcm.2212-m2021-0231 | Zbl:7924440
  • Nudo, Federico A general quadratic enrichment of the Crouzeix-Raviart finite element, Journal of Computational and Applied Mathematics, Volume 451 (2024), p. 11 (Id/No 116112) | DOI:10.1016/j.cam.2024.116112 | Zbl:7890942
  • Park, Hyeokjoo; Kwak, Do Y. An analysis of nonconforming virtual element methods on polytopal meshes with small faces, M\(^3\)AS. Mathematical Models Methods in Applied Sciences, Volume 34 (2024) no. 4, pp. 571-596 | DOI:10.1142/s021820252450009x | Zbl:1540.65493
  • Rodrigo, Carmen; Gaspar, Francisco J.; Adler, James; Hu, Xiaozhe; Ohm, Peter; Zikatanov, Ludmil Parameter-robust preconditioners for Biot's model, S\(\vec{\text{e}}\)MA Journal, Volume 81 (2024) no. 1, pp. 51-80 | DOI:10.1007/s40324-023-00336-2 | Zbl:1545.65451
  • Yun, Giseok; Lee, Jeehwan; Kim, Do-Nyun Stability of mixed overlapping elements in incompressible analysis, Computer Methods in Applied Mechanics and Engineering, Volume 412 (2023), p. 27 (Id/No 116104) | DOI:10.1016/j.cma.2023.116104 | Zbl:1539.74491
  • Chen, Yuan; Hou, Songming; Zhang, Xu Semi and fully discrete error analysis for elastodynamic interface problems using immersed finite element methods, Computers Mathematics with Applications, Volume 147 (2023), pp. 92-110 | DOI:10.1016/j.camwa.2023.07.014 | Zbl:1538.65348
  • Zhang, Xuqing; Han, Jiayu; Yang, Yidu A stabilized nonconforming Crouzeix-Raviart finite element method for the elasticity eigenvalue problem with the pure traction boundary condition, Mathematical Methods in the Applied Sciences, Volume 46 (2023) no. 17, pp. 17615-17631 | DOI:10.1002/mma.9518 | Zbl:1534.65256
  • Asadzadeh, M.; Beilina, L. A stabilized \(P1\) domain decomposition finite element method for time harmonic Maxwell's equations, Mathematics and Computers in Simulation, Volume 204 (2023), pp. 556-574 | DOI:10.1016/j.matcom.2022.08.013 | Zbl:1540.78019
  • Petrov, Sergey S.; Iakovlev, Nikolay G. SIMUG – finite element model of sea ice dynamics on triangular grid in local Cartesian basis, Russian Journal of Numerical Analysis and Mathematical Modelling, Volume 38 (2023) no. 3, pp. 145-160 | DOI:10.1515/rnam-2023-0012 | Zbl:7712178
  • Kwak, Do Y.; Park, Hyeokjoo Lowest-order virtual element methods for linear elasticity problems, Computer Methods in Applied Mechanics and Engineering, Volume 390 (2022), p. 20 (Id/No 114448) | DOI:10.1016/j.cma.2021.114448 | Zbl:1507.74487
  • Zhang, Bei; Zhao, Jikun; Li, Minghao; Chen, Hongru Stabilized nonconforming mixed finite element method for linear elasticity on rectangular or cubic meshes, Journal of Computational Mathematics, Volume 40 (2022) no. 6, pp. 869-885 | DOI:10.4208/jcm.2103-m2020-0143 | Zbl:1513.65473
  • Zhao, Jikun; Wang, Tianle; Zhang, Bei The stabilized nonconforming virtual element method for linear elasticity problem, Journal of Scientific Computing, Volume 92 (2022) no. 2, p. 29 (Id/No 68) | DOI:10.1007/s10915-022-01927-3 | Zbl:1492.65335
  • Hong, Qingguo; Kraus, Johannes; Kuchta, Miroslav; Lymbery, Maria; Mardal, Kent-André; Rognes, Marie E. Robust approximation of generalized Biot-Brinkman problems, Journal of Scientific Computing, Volume 93 (2022) no. 3, p. 28 (Id/No 77) | DOI:10.1007/s10915-022-02029-w | Zbl:1503.65231
  • Khan, Arbaz; Zanotti, Pietro A nonsymmetric approach and a quasi-optimal and robust discretization for the Biot's model, Mathematics of Computation, Volume 91 (2022) no. 335, pp. 1143-1170 | DOI:10.1090/mcom/3699 | Zbl:1491.65096
  • Balci, Anna Kh.; Ortner, Christoph; Storn, Johannes Crouzeix-Raviart finite element method for non-autonomous variational problems with Lavrentiev gap, Numerische Mathematik, Volume 151 (2022) no. 4, pp. 779-805 | DOI:10.1007/s00211-022-01303-1 | Zbl:1501.65105
  • Giga, Yoshikazu; Hieber, Matthias; Korn, Peter; Titi, Edriss S. Mathematical advances in geophysical fluid dynamics. Abstracts from the workshop held November 13–19, 2022, Oberwolfach Rep. 19, No. 4, 2961-3003, 2022 | DOI:10.4171/owr/2022/51 | Zbl:1521.00016
  • Kara, Mohamed; Mesbahi, Salim; Angot, Philippe The fictitious domain method with sharp interface for elasticity systems with general jump embedded boundary conditions, Advances in Applied Mathematics and Mechanics, Volume 13 (2021) no. 1, pp. 119-139 | DOI:10.4208/aamm.oa-2019-0119 | Zbl:1488.65569
  • Bartels, Sören Nonconforming discretizations of convex minimization problems and precise relations to mixed methods, Computers Mathematics with Applications, Volume 93 (2021), pp. 214-229 | DOI:10.1016/j.camwa.2021.04.014 | Zbl:1524.65751
  • Bonaldi, Francesco; Brenner, Konstantin; Droniou, Jérôme; Masson, Roland Gradient discretization of two-phase flows coupled with mechanical deformation in fractured porous media, Computers Mathematics with Applications, Volume 98 (2021), pp. 40-68 | DOI:10.1016/j.camwa.2021.06.017 | Zbl:1524.76443
  • Bonaldi, Francesco; Brenner, Konstantin; Droniou, Jérôme; Masson, Roland; Pasteau, Antoine; Trenty, Laurent Gradient discretization of two-phase poro-mechanical models with discontinuous pressures at matrix fracture interfaces, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 55 (2021) no. 5, pp. 1741-1777 | DOI:10.1051/m2an/2021036 | Zbl:1482.65180
  • Mehlmann, Carolin; Korn, Peter Sea-ice dynamics on triangular grids, Journal of Computational Physics, Volume 428 (2021), p. 18 (Id/No 110086) | DOI:10.1016/j.jcp.2020.110086 | Zbl:7511440
  • Fu, Guosheng; Lehrenfeld, Christoph; Linke, Alexander; Streckenbach, Timo Locking-free and gradient-robust \(H(\operatorname{div})\)-conforming HDG methods for linear elasticity, Journal of Scientific Computing, Volume 86 (2021) no. 3, p. 31 (Id/No 39) | DOI:10.1007/s10915-020-01396-6 | Zbl:1460.65146
  • Zhang, Xuqing; Yang, Yidu; Zhang, Yu A locking-free shifted inverse iteration based on multigrid discretization for the elastic eigenvalue problem, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 7, pp. 5821-5838 | DOI:10.1002/mma.7150 | Zbl:1473.65285
  • Hong, Qingguo; Hu, Jun; Ma, Limin; Xu, Jinchao New discontinuous Galerkin algorithms and analysis for linear elasticity with symmetric stress tensor, Numerische Mathematik, Volume 149 (2021) no. 3, pp. 645-678 | DOI:10.1007/s00211-021-01234-3 | Zbl:1480.65336
  • Wei, Huayi; Huang, Xuehai; Li, Ao Piecewise divergence-free nonconforming virtual elements for Stokes problem in any dimensions, SIAM Journal on Numerical Analysis, Volume 59 (2021) no. 3, pp. 1835-1856 | DOI:10.1137/20m1350479 | Zbl:1468.76054
  • Zhang, Bei; Zhao, Jikun A mixed formulation of stabilized nonconforming finite element method for linear elasticity, Advances in Applied Mathematics and Mechanics, Volume 12 (2020) no. 1, pp. 278-300 | DOI:10.4208/aamm.oa-2019-0048 | Zbl:1488.65673
  • Guo, Yuling; Huang, Jianguo A robust finite element method for elastic vibration problems, Computational Methods in Applied Mathematics, Volume 20 (2020) no. 3, pp. 481-500 | DOI:10.1515/cmam-2018-0197 | Zbl:1451.65145
  • Jo, Gwanghyun; Kwak, Do Young A reduced Crouzeix-Raviart immersed finite element method for elasticity problems with interfaces, Computational Methods in Applied Mathematics, Volume 20 (2020) no. 3, pp. 501-516 | DOI:10.1515/cmam-2019-0046 | Zbl:1451.65194
  • Burman, Erik; Christiansen, Snorre H.; Hansbo, Peter Application of a minimal compatible element to incompressible and nearly incompressible continuum mechanics, Computer Methods in Applied Mechanics and Engineering, Volume 369 (2020), p. 19 (Id/No 113224) | DOI:10.1016/j.cma.2020.113224 | Zbl:1506.74392
  • Grieshaber, Beverley J.; McBride, Andrew T.; Reddy, B. Daya Convergence in the incompressible limit of new discontinuous Galerkin methods with general quadrilateral and hexahedral elements, Computer Methods in Applied Mechanics and Engineering, Volume 370 (2020), p. 34 (Id/No 113233) | DOI:10.1016/j.cma.2020.113233 | Zbl:1506.65212
  • Grieshaber, Beverley J.; Rasolofoson, F.; Reddy, B. D. Discontinuous Galerkin approximations for near-incompressible and near-inextensible transversely isotropic bodies, Computers Mathematics with Applications, Volume 79 (2020) no. 7, pp. 1914-1935 | DOI:10.1016/j.camwa.2019.04.016 | Zbl:1452.74106
  • Guo, Ruchi; Lin, Tao; Lin, Yanping Error estimates for a partially penalized immersed finite element method for elasticity interface problems, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 54 (2020) no. 1, pp. 1-24 | DOI:10.1051/m2an/2019051 | Zbl:1442.74228
  • Marazzato, Frédéric; Ern, Alexandre; Monasse, Laurent A variational discrete element method for quasistatic and dynamic elastoplasticity, International Journal for Numerical Methods in Engineering, Volume 121 (2020) no. 23, pp. 5295-5319 | DOI:10.1002/nme.6460 | Zbl:1548.74851
  • Ambartsumyan, Ilona; Khattatov, Eldar; Nordbotten, Jan M.; Yotov, Ivan A multipoint stress mixed finite element method for elasticity on simplicial grids, SIAM Journal on Numerical Analysis, Volume 58 (2020) no. 1, pp. 630-656 | DOI:10.1137/18m1229183 | Zbl:1451.65181
  • Botti, Michele; Di Pietro, Daniele A.; Guglielmana, Alessandra A low-order nonconforming method for linear elasticity on general meshes, Computer Methods in Applied Mechanics and Engineering, Volume 354 (2019), pp. 96-118 | DOI:10.1016/j.cma.2019.05.031 | Zbl:1441.74231
  • Zhang, Bei; Zhao, Jikun; Yang, Yongqin; Chen, Shaochun The nonconforming virtual element method for elasticity problems, Journal of Computational Physics, Volume 378 (2019), pp. 394-410 | DOI:10.1016/j.jcp.2018.11.004 | Zbl:1416.74092
  • Jo, Gwanghyun; Kwak, Do Young Recent development of immersed FEM for elliptic and elastic interface problems, Journal of the Korean Society for Industrial and Applied Mathematics, Volume 23 (2019) no. 2, pp. 65-92 | DOI:10.12941/jksiam.2019.23.065 | Zbl:1434.65260
  • Hong, Qingguo; Kraus, Johannes; Lymbery, Maria; Philo, Fadi Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models., Numerical Linear Algebra with Applications, Volume 26 (2019) no. 4, p. e2242 | DOI:10.1002/nla.2242 | Zbl:1463.65372
  • Guo, Ruchi; Lin, Tao; Lin, Yanping Approximation capabilities of immersed finite element spaces for elasticity interface problems, Numerical Methods for Partial Differential Equations, Volume 35 (2019) no. 3, pp. 1243-1268 | DOI:10.1002/num.22348 | Zbl:1418.65174
  • Lee, Seungwoo; Kwak, Do Young; Sim, Imbo Immersed finite element method for eigenvalue problems in elasticity, Advances in Applied Mathematics and Mechanics, Volume 10 (2018) no. 2, pp. 424-444 | DOI:10.4208/aamm.oa-2016-0189 | Zbl:1488.65634
  • Huang, Jianguo; Huang, Xuehai An hp-version error analysis of the discontinuous Galerkin method for linear elasticity, Applied Numerical Mathematics, Volume 133 (2018), pp. 83-99 | DOI:10.1016/j.apnum.2017.12.010 | Zbl:1395.74084
  • Eymard, Robert; Guichard, Cindy Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form, Computational and Applied Mathematics, Volume 37 (2018) no. 4, pp. 4023-4054 | DOI:10.1007/s40314-017-0558-2 | Zbl:1402.65156
  • Hong, Qingguo; Kraus, Johannes Parameter-robust stability of classical three-field formulation of Biot's consolidation model, ETNA. Electronic Transactions on Numerical Analysis, Volume 48 (2018), pp. 202-226 | DOI:10.1553/etna_vol48s202 | Zbl:1398.65046
  • Sevilla, Ruben; Giacomini, Matteo; Karkoulias, Alexandros; Huerta, Antonio A superconvergent hybridisable discontinuous Galerkin method for linear elasticity, International Journal for Numerical Methods in Engineering, Volume 116 (2018) no. 2, pp. 91-116 | DOI:10.1002/nme.5916 | Zbl:1548.74894
  • Burman, Erik; Hansbo, Peter Stabilized nonconforming finite element methods for data assimilation in incompressible flows, Mathematics of Computation, Volume 87 (2018) no. 311, pp. 1029-1050 | DOI:10.1090/mcom/3255 | Zbl:1404.76157
  • Veeser, Andreas; Zanotti, Pietro Quasi-optimal nonconforming methods for symmetric elliptic problems. III: Discontinuous Galerkin and other interior penalty methods, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 5, pp. 2871-2894 | DOI:10.1137/17m1151675 | Zbl:1447.65164
  • Kyeong, Daehyeon; Kwak, Do Young An immersed finite element method for the elasticity problems with displacement jump, Advances in Applied Mathematics and Mechanics, Volume 9 (2017) no. 2, pp. 407-428 | DOI:10.4208/aamm.2016.m1427 | Zbl:1488.65633
  • Zhang, Honghai; Mo, Rong; Wan, Neng An IGA discontinuous Galerkin method on the union of overlapped patches, Computer Methods in Applied Mechanics and Engineering, Volume 326 (2017), pp. 446-480 | DOI:10.1016/j.cma.2017.08.004 | Zbl:1439.65203
  • Hu, Xiaozhe; Rodrigo, Carmen; Gaspar, Francisco J.; Zikatanov, Ludmil T. A nonconforming finite element method for the Biot's consolidation model in poroelasticity, Journal of Computational and Applied Mathematics, Volume 310 (2017), pp. 143-154 | DOI:10.1016/j.cam.2016.06.003 | Zbl:1381.76175
  • Burman, Erik A stabilized nonconforming finite element method for the elliptic Cauchy problem, Mathematics of Computation, Volume 86 (2017) no. 303, pp. 75-96 | DOI:10.1090/mcom/3092 | Zbl:1351.65074
  • Barrios, Tomás P.; Bustinza, Rommel; Sánchez, Felipe Analysis of DG approximations for Stokes problem based on velocity-pseudostress formulation, Numerical Methods for Partial Differential Equations, Volume 33 (2017) no. 5, pp. 1540-1564 | DOI:10.1002/num.22152 | Zbl:1394.65142
  • Jin, Sangwon; Kwak, Do Y.; Kyeong, Daehyeon A consistent immersed finite element method for the interface elasticity problems, Advances in Mathematical Physics, Volume 2016 (2016), p. 9 (Id/No 3292487) | DOI:10.1155/2016/3292487 | Zbl:1388.74100
  • Carstensen, Carsten; Gallistl, Dietmar; Krämer, Boris Numerical algorithms for the simulation of finite plasticity with microstructures, Analysis and computation of microstructure in finite plasticity, Cham: Springer, 2015, pp. 1-30 | DOI:10.1007/978-3-319-18242-1_1 | Zbl:1371.74257
  • Lamichhane, Bishnu P. A new stabilization technique for the nonconforming Crouzeix-Raviart element applied to linear elasticity, Applied Mathematics Letters, Volume 39 (2015), pp. 35-41 | DOI:10.1016/j.aml.2014.08.005 | Zbl:1395.74086
  • Di Pietro, Daniele A.; Ern, Alexandre A hybrid high-order locking-free method for linear elasticity on general meshes, Computer Methods in Applied Mechanics and Engineering, Volume 283 (2015), pp. 1-21 | DOI:10.1016/j.cma.2014.09.009 | Zbl:1423.74876
  • Creusé, E.; Farhloul, M.; Nicaise, S.; Paquet, L. A posteriori error estimates of the stabilized Crouzeix-Raviart finite element method for the Lamé-Navier equations, Far East Journal of Mathematical Sciences, Volume 96 (2015) no. 2, pp. 167-192 | DOI:10.17654/fjmsjan2015_167_192 | Zbl:1312.65188
  • Di Pietro, Daniele A.; Lemaire, Simon An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Mathematics of Computation, Volume 84 (2015) no. 291, pp. 1-31 | DOI:10.1090/s0025-5718-2014-02861-5 | Zbl:1308.74145
  • Grieshaber, B. J.; McBride, A. T.; Reddy, B. D. Uniformly convergent interior penalty methods using multilinear approximations for problems in elasticity, SIAM Journal on Numerical Analysis, Volume 53 (2015) no. 5, pp. 2255-2278 | DOI:10.1137/140966253 | Zbl:1327.74133
  • Shen, Yongxing; Lew, Adrian J. A locking-free and optimally convergent discontinuous-Galerkin-based extended finite element method for cracked nearly incompressible solids, Computer Methods in Applied Mechanics and Engineering, Volume 273 (2014), pp. 119-142 | DOI:10.1016/j.cma.2014.01.017 | Zbl:1296.74127
  • Faria, Cristiane O.; Loula, Abimael F. D.; dos Santos, Antônio J. B. Primal stabilized hybrid and DG finite element methods for the linear elasticity problem, Computers Mathematics with Applications, Volume 68 (2014) no. 4, pp. 486-507 | DOI:10.1016/j.camwa.2014.06.014 | Zbl:1362.74005
  • Younes, Anis; Makradi, Ahmed; Zidane, Ali; Shao, Qian; Bouhala, Lyazid A combination of Crouzeix-Raviart, discontinuous Galerkin and MPFA methods for buoyancy-driven flows, International Journal of Numerical Methods for Heat Fluid Flow, Volume 24 (2014) no. 3, pp. 735-759 | DOI:10.1108/hff-07-2012-0156 | Zbl:1356.76180
  • Di Pietro, Daniele A.; Gratien, Jean-Marc; Prud'homme, Christophe A domain-specific embedded language in C++ for lowest-order discretizations of diffusive problems on general meshes, BIT, Volume 53 (2013) no. 1, pp. 111-152 | DOI:10.1007/s10543-012-0403-3 | Zbl:1262.65148
  • Lin, Tao; Sheen, Dongwoo; Zhang, Xu A locking-free immersed finite element method for planar elasticity interface problems, Journal of Computational Physics, Volume 247 (2013), pp. 228-247 | DOI:10.1016/j.jcp.2013.03.053 | Zbl:1349.74328
  • Huang, Xuehai; Huang, Jianguo The compact discontinuous Galerkin method for nearly incompressible linear elasticity, Journal of Scientific Computing, Volume 56 (2013) no. 2, pp. 291-318 | DOI:10.1007/s10915-012-9676-6 | Zbl:1457.74024
  • Huang, Xuehai A reduced local discontinuous Galerkin method for nearly incompressible linear elasticity, Mathematical Problems in Engineering, Volume 2013 (2013), p. 11 (Id/No 546408) | DOI:10.1155/2013/546408 | Zbl:1299.74161
  • Lin, Tao; Zhang, Xu Linear and bilinear immersed finite elements for planar elasticity interface problems, Journal of Computational and Applied Mathematics, Volume 236 (2012) no. 18, pp. 4681-4699 | DOI:10.1016/j.cam.2012.03.012 | Zbl:1247.74061
  • Wu, C. T.; Hu, W. Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids, Computer Methods in Applied Mechanics and Engineering, Volume 200 (2011) no. 45-46, pp. 2991-3010 | DOI:10.1016/j.cma.2011.06.013 | Zbl:1230.74201
  • Hansbo, Peter; Larson, Mats G. Energy norm a posteriori error estimates for discontinuous Galerkin approximations of the linear elasticity problem, Computer Methods in Applied Mechanics and Engineering, Volume 200 (2011) no. 45-46, pp. 3026-3030 | DOI:10.1016/j.cma.2011.06.008 | Zbl:1230.74179
  • Hansbo, Peter A nonconforming rotated \(Q_{1}\) approximation on tetrahedra, Computer Methods in Applied Mechanics and Engineering, Volume 200 (2011) no. 9-12, pp. 1311-1316 | DOI:10.1016/j.cma.2010.11.002 | Zbl:1225.74089
  • Ayuso, B.; Georgiev, I.; Kraus, J.; Zikatanov, L. A simple preconditioner for the SIPG discretization of linear elasticity equations, Numerical methods and applications. 7th international conference, NMA 2010, Borovets, Bulgaria, August 20–24, 2010. Revised papers, Berlin: Springer, 2011, pp. 353-360 | DOI:10.1007/978-3-642-18466-6_42 | Zbl:1317.65083
  • Feng, Min-fu; Qi, Rui-sheng; Zhu, Rui; Ju, Bing-tao Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem, Applied Mathematics and Mechanics. (English Edition), Volume 31 (2010) no. 3, pp. 393-404 | DOI:10.1007/s10483-010-0312-z | Zbl:1354.65245
  • Lee, Hyung-Chun; Kim, Kwang-Yeon A posteriori error estimators for stabilized \(P\)1 nonconforming approximation of the Stokes problem, Computer Methods in Applied Mechanics and Engineering, Volume 199 (2010) no. 45-48, pp. 2903-2912 | DOI:10.1016/j.cma.2010.06.002 | Zbl:1231.76157
  • Hansbo, Peter A discontinuous finite element method for elasto-plasticity, International Journal for Numerical Methods in Biomedical Engineering, Volume 26 (2010) no. 6, pp. 780-789 | DOI:10.1002/cnm.1182 | Zbl:1351.74082
  • Hansbo, Peter; Rylander, Thomas A linear nonconforming finite element method for Maxwell's equations in two dimensions. I: Frequency domain, Journal of Computational Physics, Volume 229 (2010) no. 18, pp. 6534-6547 | DOI:10.1016/j.jcp.2010.05.009 | Zbl:1197.78061
  • Chen, Yuncheng; Huang, Jianguo; Huang, Xuehai; Xu, Yifeng On the local discontinuous Galerkin method for linear elasticity, Mathematical Problems in Engineering, Volume 2010 (2010), p. 20 (Id/No 759547) | DOI:10.1155/2010/759547 | Zbl:1426.74284
  • Girault, Vivette; Pencheva, Gergina V.; Wheeler, Mary F.; Wildey, Tim M. Domain decomposition for linear elasticity with DG jumps and mortars, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2009) no. 21-26, pp. 1751-1765 | DOI:10.1016/j.cma.2008.12.037 | Zbl:1227.74069
  • Eyck, Alex Ten; Celiker, Fatih; Lew, Adrian Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: motivation, formulation, and numerical examples, Computer Methods in Applied Mechanics and Engineering, Volume 197 (2008) no. 45-48, pp. 3605-3622 | DOI:10.1016/j.cma.2008.02.020 | Zbl:1194.74389
  • Djoko, J. K.; Ebobisse, F.; McBride, A. T.; Reddy, B. D. A discontinuous Galerkin formulation for classical and gradient plasticity. II: Algorithms and numerical analysis, Computer Methods in Applied Mechanics and Engineering, Volume 197 (2007) no. 1-4, pp. 1-21 | DOI:10.1016/j.cma.2007.06.027 | Zbl:1169.74595
  • Lazarov, Raytcho; Ye, Xiu Stabilized discontinuous finite element approximations for Stokes equations, Journal of Computational and Applied Mathematics, Volume 198 (2007) no. 1, pp. 236-252 | DOI:10.1016/j.cam.2005.12.028 | Zbl:1101.76035
  • Kalinkin, A. A.; Laevsky, Yu. M. Preconditioning of grid Lamé equations in the nonconforming finite element method, Russian Journal of Numerical Analysis and Mathematical Modelling, Volume 22 (2007) no. 1, pp. 39-62 | DOI:10.1515/rnam.2007.22.1.39 | Zbl:1116.74061
  • Warburton, T.; Embree, Mark The role of the penalty in the local discontinuous Galerkin method for Maxwell's eigenvalue problem, Computer Methods in Applied Mechanics and Engineering, Volume 195 (2006) no. 25-28, pp. 3205-3223 | DOI:10.1016/j.cma.2005.06.011 | Zbl:1131.78011
  • Heintz, Per; Hansbo, Peter Stabilized Lagrange multiplier methods for bilateral elastic contact with friction, Computer Methods in Applied Mechanics and Engineering, Volume 195 (2006) no. 33-36, pp. 4323-4333 | DOI:10.1016/j.cma.2005.09.008 | Zbl:1123.74045
  • Mergheim, Julia; Steinmann, Paul A geometrically nonlinear FE approach for the simulation of strong and weak discontinuities, Computer Methods in Applied Mechanics and Engineering, Volume 195 (2006) no. 37-40, pp. 5037-5052 | DOI:10.1016/j.cma.2005.05.057 | Zbl:1126.74050
  • Degerfeldt, D.; Rylander, T. A brick-tetrahedron finite-element interface with stable hybrid explicit-implicit time-stepping for Maxwell's equations, Journal of Computational Physics, Volume 220 (2006) no. 1, pp. 383-393 | DOI:10.1016/j.jcp.2006.05.016 | Zbl:1116.78021

Cité par 96 documents. Sources : zbMATH