Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation
ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 651-676.

Voir la notice de l'article dans Numdam

In this paper, we study the linear Schrödinger equation over the d-dimensional torus, with small values of the perturbing potential. We consider numerical approximations of the associated solutions obtained by a symplectic splitting method (to discretize the time variable) in combination with the Fast Fourier Transform algorithm (to discretize the space variable). In this fully discrete setting, we prove that the regularity of the initial datum is preserved over long times, i.e. times that are exponentially long with the time discretization parameter. We here refer to Gevrey regularity, and our estimates turn out to be uniform in the space discretization parameter. This paper extends [G. Dujardin and E. Faou, Numer. Math. 97 (2004) 493-535], where a similar result has been obtained in the semi-discrete situation, i.e. when the mere time variable is discretized and space is kept a continuous variable.

DOI : 10.1051/m2an/2009028
Classification : 65P10, 37M15, 37K55
Mots-clés : splitting, KAM theory, resonance, normal forms, Gevrey regularity, Schrödinger equation
@article{M2AN_2009__43_4_651_0,
     author = {Castella, Fran\c{c}ois and Dujardin, Guillaume},
     title = {Propagation of {Gevrey} regularity over long times for the fully discrete {Lie} {Trotter} splitting scheme applied to the linear {Schr\"odinger} equation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {651--676},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {4},
     year = {2009},
     doi = {10.1051/m2an/2009028},
     zbl = {1171.65089},
     mrnumber = {2542870},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009028/}
}
TY  - JOUR
AU  - Castella, François
AU  - Dujardin, Guillaume
TI  - Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2009
SP  - 651
EP  - 676
VL  - 43
IS  - 4
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009028/
DO  - 10.1051/m2an/2009028
LA  - en
ID  - M2AN_2009__43_4_651_0
ER  - 
%0 Journal Article
%A Castella, François
%A Dujardin, Guillaume
%T Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2009
%P 651-676
%V 43
%N 4
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009028/
%R 10.1051/m2an/2009028
%G en
%F M2AN_2009__43_4_651_0
Castella, François; Dujardin, Guillaume. Propagation of Gevrey regularity over long times for the fully discrete Lie Trotter splitting scheme applied to the linear Schrödinger equation. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 651-676. doi : 10.1051/m2an/2009028. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009028/

Cité par Sources :