Analysis of the accuracy and convergence of equation-free projection to a slow manifold
ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 757-784.

Voir la notice de l'article dans Numdam

In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, SIAM J. Appl. Dyn. Syst. 4 (2005) 711-732], we developed a class of iterative algorithms within the context of equation-free methods to approximate low-dimensional, attracting, slow manifolds in systems of differential equations with multiple time scales. For user-specified values of a finite number of the observables, the mth member of the class of algorithms (m=0,1,...) finds iteratively an approximation of the appropriate zero of the (m+1)st time derivative of the remaining variables and uses this root to approximate the location of the point on the slow manifold corresponding to these values of the observables. This article is the first of two articles in which the accuracy and convergence of the iterative algorithms are analyzed. Here, we work directly with fast-slow systems, in which there is an explicit small parameter, ε, measuring the separation of time scales. We show that, for each m=0,1,..., the fixed point of the iterative algorithm approximates the slow manifold up to and including terms of 𝒪(ε m ). Moreover, for each m, we identify explicitly the conditions under which the mth iterative algorithm converges to this fixed point. Finally, we show that when the iteration is unstable (or converges slowly) it may be stabilized (or its convergence may be accelerated) by application of the Recursive Projection Method. Alternatively, the Newton-Krylov Generalized Minimal Residual Method may be used. In the subsequent article, we will consider the accuracy and convergence of the iterative algorithms for a broader class of systems - in which there need not be an explicit small parameter - to which the algorithms also apply.

DOI : 10.1051/m2an/2009026
Classification : 35B25, 35B42, 37M99, 65L20, 65P99
Mots-clés : iterative initialization, DAEs, singular perturbations, legacy codes, inertial manifolds
@article{M2AN_2009__43_4_757_0,
     author = {Zagaris, Antonios and Gear, C. William and Kaper, Tasso J. and Kevrekidis, Yannis G.},
     title = {Analysis of the accuracy and convergence of equation-free projection to a slow manifold},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {757--784},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {4},
     year = {2009},
     doi = {10.1051/m2an/2009026},
     mrnumber = {2542876},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009026/}
}
TY  - JOUR
AU  - Zagaris, Antonios
AU  - Gear, C. William
AU  - Kaper, Tasso J.
AU  - Kevrekidis, Yannis G.
TI  - Analysis of the accuracy and convergence of equation-free projection to a slow manifold
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2009
SP  - 757
EP  - 784
VL  - 43
IS  - 4
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009026/
DO  - 10.1051/m2an/2009026
LA  - en
ID  - M2AN_2009__43_4_757_0
ER  - 
%0 Journal Article
%A Zagaris, Antonios
%A Gear, C. William
%A Kaper, Tasso J.
%A Kevrekidis, Yannis G.
%T Analysis of the accuracy and convergence of equation-free projection to a slow manifold
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2009
%P 757-784
%V 43
%N 4
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009026/
%R 10.1051/m2an/2009026
%G en
%F M2AN_2009__43_4_757_0
Zagaris, Antonios; Gear, C. William; Kaper, Tasso J.; Kevrekidis, Yannis G. Analysis of the accuracy and convergence of equation-free projection to a slow manifold. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 757-784. doi : 10.1051/m2an/2009026. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009026/

Cité par Sources :