Voir la notice de l'article dans Numdam
The integration to steady state of many initial value ODEs and PDEs using the forward Euler method can alternatively be considered as gradient descent for an associated minimization problem. Greedy algorithms such as steepest descent for determining the step size are as slow to reach steady state as is forward Euler integration with the best uniform step size. But other, much faster methods using bolder step size selection exist. Various alternatives are investigated from both theoretical and practical points of view. The steepest descent method is also known for the regularizing or smoothing effect that the first few steps have for certain inverse problems, amounting to a finite time regularization. We further investigate the retention of this property using the faster gradient descent variants in the context of two applications. When the combination of regularization and accuracy demands more than a dozen or so steepest descent steps, the alternatives offer an advantage, even though (indeed because) the absolute stability limit of forward Euler is carefully yet severely violated.
Mots-clés : steady state, artificial time, gradient descent, forward Euler, lagged steepest descent, regularization
Ascher, Uri M.  ; Kees van den Doel  ; Huang, Hui 1 ; Svaiter, Benar F. 2
@article{M2AN_2009__43_4_689_0, author = {Ascher, Uri M. and Kees van den Doel and Huang, Hui and Svaiter, Benar F.}, title = {Gradient descent and fast artificial time integration}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {689--708}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/m2an/2009025}, zbl = {1169.65329}, mrnumber = {2542872}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009025/} }
TY - JOUR AU - Ascher, Uri M. AU - Kees van den Doel AU - Huang, Hui AU - Svaiter, Benar F. TI - Gradient descent and fast artificial time integration JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2009 SP - 689 EP - 708 VL - 43 IS - 4 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009025/ DO - 10.1051/m2an/2009025 LA - en ID - M2AN_2009__43_4_689_0 ER -
%0 Journal Article %A Ascher, Uri M. %A Kees van den Doel %A Huang, Hui %A Svaiter, Benar F. %T Gradient descent and fast artificial time integration %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2009 %P 689-708 %V 43 %N 4 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009025/ %R 10.1051/m2an/2009025 %G en %F M2AN_2009__43_4_689_0
Ascher, Uri M.; Kees van den Doel; Huang, Hui; Svaiter, Benar F. Gradient descent and fast artificial time integration. ESAIM: Mathematical Modelling and Numerical Analysis , Special issue on Numerical ODEs today, Tome 43 (2009) no. 4, pp. 689-708. doi : 10.1051/m2an/2009025. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009025/
Cité par Sources :