Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 3, pp. 563-589.

Voir la notice de l'article dans Numdam

We analyze two numerical schemes of Euler type in time and C 0 finite-element type with 1 -approximation in space for solving a phase-field model of a binary alloy with thermal properties. This model is written as a highly non-linear parabolic system with three unknowns: phase-field, solute concentration and temperature, where the diffusion for the temperature and solute concentration may degenerate. The first scheme is nonlinear, unconditionally stable and convergent. The other scheme is linear but conditionally stable and convergent. A maximum principle is avoided in both schemes, using a truncation operator on the L 2 projection onto the 0 finite element for the discrete concentration. In addition, for the model when the heat conductivity and solute diffusion coefficients are constants, optimal error estimates for both schemes are shown based on stability estimates.

DOI : 10.1051/m2an/2009011
Classification : 35Q72, 35K65, 65M12, 65M60
Mots-clés : phase-field models, diffuse interface model, solidification process, degenerate parabolic systems, backward Euler schemes, finite elements, stability, convergence, error estimates
@article{M2AN_2009__43_3_563_0,
     author = {Guill\'en-Gonz\'alez, Francisco and Guti\'errez-Santacreu, Juan Vicente},
     title = {Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {563--589},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {3},
     year = {2009},
     doi = {10.1051/m2an/2009011},
     zbl = {1171.80006},
     mrnumber = {2536249},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009011/}
}
TY  - JOUR
AU  - Guillén-González, Francisco
AU  - Gutiérrez-Santacreu, Juan Vicente
TI  - Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2009
SP  - 563
EP  - 589
VL  - 43
IS  - 3
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009011/
DO  - 10.1051/m2an/2009011
LA  - en
ID  - M2AN_2009__43_3_563_0
ER  - 
%0 Journal Article
%A Guillén-González, Francisco
%A Gutiérrez-Santacreu, Juan Vicente
%T Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2009
%P 563-589
%V 43
%N 3
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009011/
%R 10.1051/m2an/2009011
%G en
%F M2AN_2009__43_3_563_0
Guillén-González, Francisco; Gutiérrez-Santacreu, Juan Vicente. Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 3, pp. 563-589. doi : 10.1051/m2an/2009011. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009011/

Cité par Sources :