Plane wave discontinuous Galerkin methods : analysis of the h-version
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 2, pp. 297-331.

Voir la notice de l'article dans Numdam

We are concerned with a finite element approximation for time-harmonic wave propagation governed by the Helmholtz equation. The usually oscillatory behavior of solutions, along with numerical dispersion, render standard finite element methods grossly inefficient already in medium-frequency regimes. As an alternative, methods that incorporate information about the solution in the form of plane waves have been proposed. We focus on a class of Trefftz-type discontinuous Galerkin methods that employs trial and test spaces spanned by local plane waves. In this paper we give a priori convergence estimates for the h-version of these plane wave discontinuous Galerkin methods in two dimensions. To that end, we develop new inverse and approximation estimates for plane waves and use these in the context of duality techniques. Asymptotic optimality of the method in a mesh dependent norm can be established. However, the estimates require a minimal resolution of the mesh beyond what it takes to resolve the wavelength. We give numerical evidence that this requirement cannot be dispensed with. It reflects the presence of numerical dispersion.

DOI : 10.1051/m2an/2009002
Classification : 65N15, 65N30, 35J05
Mots-clés : wave propagation, finite element methods, discontinuous Galerkin methods, plane waves, ultra weak variational formulation, duality estimates, numerical dispersion

Gittelson, Claude J.  ; Hiptmair, Ralf  ; Perugia, Ilaria 1

1 Dipartimento di Matematica, Università di Pavia, Italy.
@article{M2AN_2009__43_2_297_0,
     author = {Gittelson, Claude J. and Hiptmair, Ralf and Perugia, Ilaria},
     title = {Plane wave discontinuous {Galerkin} methods : analysis of the $h$-version},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {297--331},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {2},
     year = {2009},
     doi = {10.1051/m2an/2009002},
     zbl = {1165.65076},
     mrnumber = {2512498},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009002/}
}
TY  - JOUR
AU  - Gittelson, Claude J.
AU  - Hiptmair, Ralf
AU  - Perugia, Ilaria
TI  - Plane wave discontinuous Galerkin methods : analysis of the $h$-version
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2009
SP  - 297
EP  - 331
VL  - 43
IS  - 2
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009002/
DO  - 10.1051/m2an/2009002
LA  - en
ID  - M2AN_2009__43_2_297_0
ER  - 
%0 Journal Article
%A Gittelson, Claude J.
%A Hiptmair, Ralf
%A Perugia, Ilaria
%T Plane wave discontinuous Galerkin methods : analysis of the $h$-version
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2009
%P 297-331
%V 43
%N 2
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009002/
%R 10.1051/m2an/2009002
%G en
%F M2AN_2009__43_2_297_0
Gittelson, Claude J.; Hiptmair, Ralf; Perugia, Ilaria. Plane wave discontinuous Galerkin methods : analysis of the $h$-version. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 2, pp. 297-331. doi : 10.1051/m2an/2009002. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009002/

Cité par Sources :