Voir la notice de l'article provenant de la source Numdam
We are concerned with a finite element approximation for time-harmonic wave propagation governed by the Helmholtz equation. The usually oscillatory behavior of solutions, along with numerical dispersion, render standard finite element methods grossly inefficient already in medium-frequency regimes. As an alternative, methods that incorporate information about the solution in the form of plane waves have been proposed. We focus on a class of Trefftz-type discontinuous Galerkin methods that employs trial and test spaces spanned by local plane waves. In this paper we give a priori convergence estimates for the
Gittelson, Claude J. ; Hiptmair, Ralf ; Perugia, Ilaria 1
@article{M2AN_2009__43_2_297_0, author = {Gittelson, Claude J. and Hiptmair, Ralf and Perugia, Ilaria}, title = {Plane wave discontinuous {Galerkin} methods : analysis of the $h$-version}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {297--331}, publisher = {EDP-Sciences}, volume = {43}, number = {2}, year = {2009}, doi = {10.1051/m2an/2009002}, mrnumber = {2512498}, zbl = {1165.65076}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009002/} }
TY - JOUR AU - Gittelson, Claude J. AU - Hiptmair, Ralf AU - Perugia, Ilaria TI - Plane wave discontinuous Galerkin methods : analysis of the $h$-version JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2009 SP - 297 EP - 331 VL - 43 IS - 2 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009002/ DO - 10.1051/m2an/2009002 LA - en ID - M2AN_2009__43_2_297_0 ER -
%0 Journal Article %A Gittelson, Claude J. %A Hiptmair, Ralf %A Perugia, Ilaria %T Plane wave discontinuous Galerkin methods : analysis of the $h$-version %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2009 %P 297-331 %V 43 %N 2 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009002/ %R 10.1051/m2an/2009002 %G en %F M2AN_2009__43_2_297_0
Gittelson, Claude J.; Hiptmair, Ralf; Perugia, Ilaria. Plane wave discontinuous Galerkin methods : analysis of the $h$-version. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 2, pp. 297-331. doi : 10.1051/m2an/2009002. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2009002/
[1] Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42 (2004) 563-575. | Zbl | MR
,[2] Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | Zbl | MR
, , and ,[3] The partition of unity method. Int. J. Numer. Methods Eng. 40 (1997) 727-758. | Zbl | MR
and ,[4] Is the pollution effect of the FEM avoidable for the Helmholtz equation? SIAM Review 42 (2000) 451-484. | Zbl | MR
and ,[5] A refined Galerkin error and stability analysis for highly indefinite variational problems. Report 03-06, Institut für Mathematik, Universität Zürich, Zürich, Switzerland (2006). | Zbl | MR
and ,[6] Mathematical theory of finite element methods, Texts in Applied Mathematics. Springer-Verlag, New York, 2nd edn. (2002). | Zbl | MR
and ,[7] Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM: M2AN 42 (2008) 925-940. | Zbl | MR | mathdoc-id
and ,[8] An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676-1706. | Zbl | MR
, , and ,[9] Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Ph.D. Thesis, Université Parix IX Dauphine, Paris, France (1996).
,[10] Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35 (1998) 255-299. | Zbl | MR
and ,[11] Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. J. Comp. Acoust. 11 (2003) 227-238. | MR
and ,[12] Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16 (2006) 139-160. | Zbl | MR
and ,[13] Sur une formulation variationnelle de type ultra-faible. C. R. Acad. Sci. Paris, Ser. I 318 (1994) 939-944. | Zbl | MR
,[14] A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389-1419. | Zbl | MR
, and ,[15] Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 61 (2004) 1938-1956. | Zbl | MR
, and ,[16] Discontinuous Galerkin methods with plane waves for the displacement-based acoustic equation. Int. J. Numer. Meth. Engr. 66 (2006) 549-569. | Zbl | MR
,[17] Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comp. Phys. 225 (2007) 1961-1984. | Zbl | MR
,[18] Plane wave discontinuous Galerkin methods. Preprint NI07088-HOP, Isaac Newton Institute Cambride, Cambrid, UK (2007). Available at http://www.newton.cam.ac.uk/preprints/NI07088.pdf.
, and ,[19] Stability estimates for a class of Helmholtz problems. Communications in Mathematical Sciences 5 (2007) 665-678. | Zbl | MR
,[20] A quadrilateral edge element scheme with minimum dispersion. Report 2003-17, SAM, ETH Zürich, Zürich, Switzerland (2003).
and ,[21] The use of plane waves to approximate wave propagation in anisotropic media. J. Comput. Math. 25 (2007) 350-367. | MR
and ,[22] Computational aspects of the ultra-weak variational formulation. J. Comp. Phys. 182 (2002) 27-46. | Zbl | MR
, and ,[23] Solving Maxwell's equations using the ultra weak variational formulation. J. Comp. Phys. 223 (2007) 731-758. | Zbl | MR
, and ,[24] Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences 132. Springer-Verlag, New York (1998). | Zbl | MR
,[25] Modelling of short wave diffraction problems using approximating systems of plane waves. Int. J. Numer. Meth. Engr. 54 (2002) 1501-1533. | Zbl
, and ,[26] On Generalized Finite Element Methods. Ph.D. Thesis, University of Maryland, USA (1995).
,[27] A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121-136. | Zbl | MR
and ,[28] Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Phil. Trans. R. Soc. London A 362 (2004) 561-577. | Zbl | MR
, and ,[29] The multiscale VTCR approach applied to acoustics problems. J. Comp. Acoust. (2008) (to appear).
, and ,[30] An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959-962. | Zbl | MR
,[31]
[32] Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Meth. Engr. 41 (1998) 831-849. | Zbl | MR
,[33] Three-dimensional discontinuous Galerkin elements with plane waves and lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 66 (2006) 796-815. | Zbl | MR
and ,Cité par Sources :