Symplectic Pontryagin approximations for optimal design
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 1, pp. 3-32.

Voir la notice de l'article dans Numdam

The powerful Hamilton-Jacobi theory is used for constructing regularizations and error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method for optimal design and reconstruction: the first, analytical, step is to regularize the hamiltonian; next the solution to its stationary hamiltonian system, a nonlinear partial differential equation, is computed with the Newton method. The method is efficient for designs where the hamiltonian function can be explicitly formulated and when the jacobian is sparse, but becomes impractical otherwise (e.g. for non local control constraints). An error estimate for the difference between exact and approximate objective functions is derived, depending only on the difference of the hamiltonian and its finite dimensional regularization along the solution path and its L 2 projection, i.e. not on the difference of the exact and approximate solutions to the hamiltonian systems.

DOI : 10.1051/m2an/2008038
Classification : 65N21, 49L25
Mots-clés : topology optimization, inverse problems, Hamilton-Jacobi, regularization, error estimates, impedance tomography, convexification, homogenization
@article{M2AN_2009__43_1_3_0,
     author = {Carlsson, Jesper and Sandberg, Mattias and Szepessy, Anders},
     title = {Symplectic {Pontryagin} approximations for optimal design},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {3--32},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {1},
     year = {2009},
     doi = {10.1051/m2an/2008038},
     zbl = {1159.65068},
     mrnumber = {2494792},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2008038/}
}
TY  - JOUR
AU  - Carlsson, Jesper
AU  - Sandberg, Mattias
AU  - Szepessy, Anders
TI  - Symplectic Pontryagin approximations for optimal design
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2009
SP  - 3
EP  - 32
VL  - 43
IS  - 1
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2008038/
DO  - 10.1051/m2an/2008038
LA  - en
ID  - M2AN_2009__43_1_3_0
ER  - 
%0 Journal Article
%A Carlsson, Jesper
%A Sandberg, Mattias
%A Szepessy, Anders
%T Symplectic Pontryagin approximations for optimal design
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2009
%P 3-32
%V 43
%N 1
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2008038/
%R 10.1051/m2an/2008038
%G en
%F M2AN_2009__43_1_3_0
Carlsson, Jesper; Sandberg, Mattias; Szepessy, Anders. Symplectic Pontryagin approximations for optimal design. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 43 (2009) no. 1, pp. 3-32. doi : 10.1051/m2an/2008038. https://geodesic-test.mathdoc.fr/articles/10.1051/m2an/2008038/

Cité par Sources :