Voir la notice de l'article provenant de la source Numdam
A well known result of Fraenkel and Simpson states that the number of distinct squares in a word of length
@article{ITA_2009__43_4_767_0, author = {Blanchet-Sadri, Francine and Merca\c{s}, Robert}, title = {A note on the number of squares in a partial word with one hole}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {767--774}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/ita/2009019}, mrnumber = {2589991}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1051/ita/2009019/} }
TY - JOUR AU - Blanchet-Sadri, Francine AU - Mercaş, Robert TI - A note on the number of squares in a partial word with one hole JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 767 EP - 774 VL - 43 IS - 4 PB - EDP-Sciences UR - https://geodesic-test.mathdoc.fr/articles/10.1051/ita/2009019/ DO - 10.1051/ita/2009019 LA - en ID - ITA_2009__43_4_767_0 ER -
%0 Journal Article %A Blanchet-Sadri, Francine %A Mercaş, Robert %T A note on the number of squares in a partial word with one hole %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 767-774 %V 43 %N 4 %I EDP-Sciences %U https://geodesic-test.mathdoc.fr/articles/10.1051/ita/2009019/ %R 10.1051/ita/2009019 %G en %F ITA_2009__43_4_767_0
Blanchet-Sadri, Francine; Mercaş, Robert. A note on the number of squares in a partial word with one hole. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 4, pp. 767-774. doi : 10.1051/ita/2009019. https://geodesic-test.mathdoc.fr/articles/10.1051/ita/2009019/
[1] Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci. 218 (1999) 135-141. | Zbl | MR
and ,[2] Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press, Boca Raton, FL (2008). | MR
,[3] Conjugacy on partial words. Theoret. Comput. Sci. 289 (2002) 297-312. | Zbl | MR
and ,[4] Counting distinct squares in partial words, edited by E. Csuhaj-Varju, Z. Esik, AFL 2008, 12th International Conference on Automata and Formal Languages, Balatonfüred, Hungary (2008) 122-133, www.uncg.edu/cmp/research/freeness | MR
, and ,[5] Equations on partial words. RAIRO-Theor. Inf. Appl. 43 (2009) 23-39, www.uncg.edu/cmp/research/equations | Zbl | MR | mathdoc-id
, and ,[6] How many squares can a string contain? J. Combin. Theory Ser. A 82 (1998) 112-120. | Zbl | MR
and ,[7] A simple proof that a word of length
[8] A note on the number of squares in a word. Theoret. Comput. Sci. 380 (2007) 373-376. | Zbl | MR
,Cité par Sources :