A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part I
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 3, pp. 443-461.

Voir la notice de l'article dans Numdam

The algebraic study of formal languages shows that ω-rational sets correspond precisely to the ω-languages recognizable by finite ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height ω ω .

DOI : 10.1051/ita/2009004
Classification : O3D55, 20M35, 68Q70, 91A65
Mots-clés : $\omega $-automata, $\omega $-rational languages, $\omega $-semigroups, infinite games, hierarchical games, Wadge game, Wadge hierarchy, Wagner hierarchy
@article{ITA_2009__43_3_443_0,
     author = {Cabessa, J\'er\'emie and Duparc, Jacques},
     title = {A game theoretical approach to the algebraic counterpart of the {Wagner} hierarchy : part {I}},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {443--461},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {3},
     year = {2009},
     doi = {10.1051/ita/2009004},
     zbl = {1175.03021},
     mrnumber = {2541207},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1051/ita/2009004/}
}
TY  - JOUR
AU  - Cabessa, Jérémie
AU  - Duparc, Jacques
TI  - A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part I
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2009
SP  - 443
EP  - 461
VL  - 43
IS  - 3
PB  - EDP-Sciences
UR  - https://geodesic-test.mathdoc.fr/articles/10.1051/ita/2009004/
DO  - 10.1051/ita/2009004
LA  - en
ID  - ITA_2009__43_3_443_0
ER  - 
%0 Journal Article
%A Cabessa, Jérémie
%A Duparc, Jacques
%T A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part I
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2009
%P 443-461
%V 43
%N 3
%I EDP-Sciences
%U https://geodesic-test.mathdoc.fr/articles/10.1051/ita/2009004/
%R 10.1051/ita/2009004
%G en
%F ITA_2009__43_3_443_0
Cabessa, Jérémie; Duparc, Jacques. A game theoretical approach to the algebraic counterpart of the Wagner hierarchy : part I. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 3, pp. 443-461. doi : 10.1051/ita/2009004. https://geodesic-test.mathdoc.fr/articles/10.1051/ita/2009004/

Cité par Sources :