Spectral sets and the Drazin inverse with applications to second order differential equations
Applications of Mathematics, Tome 47 (2002) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper defines and studies the Drazin inverse for a closed linear operator A in a Banach space X in the case that 0 belongs to a spectral set of the spectrum of A. Results are applied to extend a result of Krein on a nonhomogeneous second order differential equation in a Banach space.
DOI : 10.1023/A:1021793115985
Classification : 34G10, 47A05, 47A10, 47A60, 47N20
Mots-clés : Banach space; closed linear operators; Drazin inverse; spectral sets; second order differential equations
@article{10_1023_A_1021793115985,
     author = {Tran, Trung Dinh},
     title = {Spectral sets and the {Drazin} inverse with applications to second order differential equations},
     journal = {Applications of Mathematics},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2002},
     doi = {10.1023/A:1021793115985},
     mrnumber = {1876488},
     zbl = {1068.47005},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1023/A:1021793115985/}
}
TY  - JOUR
AU  - Tran, Trung Dinh
TI  - Spectral sets and the Drazin inverse with applications to second order differential equations
JO  - Applications of Mathematics
PY  - 2002
SP  - 1
EP  - 8
VL  - 47
IS  - 1
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1023/A:1021793115985/
DO  - 10.1023/A:1021793115985
LA  - en
ID  - 10_1023_A_1021793115985
ER  - 
%0 Journal Article
%A Tran, Trung Dinh
%T Spectral sets and the Drazin inverse with applications to second order differential equations
%J Applications of Mathematics
%D 2002
%P 1-8
%V 47
%N 1
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1023/A:1021793115985/
%R 10.1023/A:1021793115985
%G en
%F 10_1023_A_1021793115985
Tran, Trung Dinh. Spectral sets and the Drazin inverse with applications to second order differential equations. Applications of Mathematics, Tome 47 (2002) no. 1, pp. 1-8. doi : 10.1023/A:1021793115985. https://geodesic-test.mathdoc.fr/articles/10.1023/A:1021793115985/
  • Abad, Othman; Zguitti, Hassane Generalized Drazin-Riesz invertible elements in a semi-simple Banach algebra, Afrika Matematika, Volume 36 (2025) no. 1, p. 24 (Id/No 8) | DOI:10.1007/s13370-024-01227-z | Zbl:7987238
  • Peng, Fei; Zhang, Xiaoxiang Jacobson's lemma for spectral idempotents in Banach algebras, Complex Analysis and Operator Theory, Volume 18 (2024) no. 8, p. 11 (Id/No 170) | DOI:10.1007/s11785-024-01616-z | Zbl:7930084
  • Abad, Othman; Zguitti, Hassane A note on the generalized Drazin-Riesz invertible operators, Annals of Functional Analysis, Volume 12 (2021) no. 4, p. 17 (Id/No 55) | DOI:10.1007/s43034-021-00142-9 | Zbl:1523.47005
  • Zhou, Yukun; Chen, Jianlong; Zhou, Mengmeng m-weak group inverses in a ring with involution, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM, Volume 115 (2021) no. 1, p. 12 (Id/No 2) | DOI:10.1007/s13398-020-00932-1 | Zbl:1455.16036
  • Zhou, Mengmeng; Chen, Jianlong; Zhou, Yukun Weak group inverses in proper -rings, Journal of Algebra and its Applications, Volume 19 (2020) no. 12, p. 14 (Id/No 2050238) | DOI:10.1142/s0219498820502382 | Zbl:1464.16037
  • Jin, Hongwei; Bai, Minru; Benítez, Julio; Liu, Xiaoji The generalized inverses of tensors and an application to linear models, Computers Mathematics with Applications, Volume 74 (2017) no. 3, pp. 385-397 | DOI:10.1016/j.camwa.2017.04.017 | Zbl:1390.15079

Cité par 6 documents. Sources : zbMATH