Periodic solutions of a nonlinear evolution problem
Applications of Mathematics, Tome 47 (2002) no. 5, pp. 381-396.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we prove existence of periodic solutions to a nonlinear evolution system of second order partial differential equations involving the pseudo-Laplacian operator. To show the existence of periodic solutions we use Faedo-Galerkin method with a Schauder fixed point argument.
DOI : 10.1023/A:1021757823679
Classification : 35B10, 35L99, 35Q99
Mots-clés : periodic solutions; fixed points; nonlinear evolution problem; pseudo-Laplacian
@article{10_1023_A_1021757823679,
     author = {de Oliveira Castro, Nelson Nery and de Andrade, Nirzi G.},
     title = {Periodic solutions of a nonlinear evolution problem},
     journal = {Applications of Mathematics},
     pages = {381--396},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2002},
     doi = {10.1023/A:1021757823679},
     mrnumber = {1924676},
     zbl = {1090.35548},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1023/A:1021757823679/}
}
TY  - JOUR
AU  - de Oliveira Castro, Nelson Nery
AU  - de Andrade, Nirzi G.
TI  - Periodic solutions of a nonlinear evolution problem
JO  - Applications of Mathematics
PY  - 2002
SP  - 381
EP  - 396
VL  - 47
IS  - 5
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1023/A:1021757823679/
DO  - 10.1023/A:1021757823679
LA  - en
ID  - 10_1023_A_1021757823679
ER  - 
%0 Journal Article
%A de Oliveira Castro, Nelson Nery
%A de Andrade, Nirzi G.
%T Periodic solutions of a nonlinear evolution problem
%J Applications of Mathematics
%D 2002
%P 381-396
%V 47
%N 5
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1023/A:1021757823679/
%R 10.1023/A:1021757823679
%G en
%F 10_1023_A_1021757823679
de Oliveira Castro, Nelson Nery; de Andrade, Nirzi G. Periodic solutions of a nonlinear evolution problem. Applications of Mathematics, Tome 47 (2002) no. 5, pp. 381-396. doi : 10.1023/A:1021757823679. https://geodesic-test.mathdoc.fr/articles/10.1023/A:1021757823679/

Cité par Sources :