Augmentation quotients for Burnside rings of generalized dihedral groups
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1165-1175.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $H$ be a finite abelian group of odd order, $\mathcal {D}$ be its generalized dihedral group, i.e., the semidirect product of $C_2$ acting on $H$ by inverting elements, where $C_2$ is the cyclic group of order two. Let $\Omega (\mathcal {D})$ be the Burnside ring of $\mathcal {D}$, $\Delta (\mathcal {D})$ be the augmentation ideal of $\Omega (\mathcal {D})$. Denote by $\Delta ^n(\mathcal {D})$ and $Q_n(\mathcal {D})$ the $n$th power of $\Delta (\mathcal {D})$ and the $n$th consecutive quotient group $\Delta ^n(\mathcal {D})/\Delta ^{n+1}(\mathcal {D})$, respectively. This paper provides an explicit $\mathbb {Z}$-basis for $\Delta ^n(\mathcal {D})$ and determines the isomorphism class of $Q_n(\mathcal {D})$ for each positive integer $n$.
DOI :
10.1007/s10587-016-0316-4
Classification :
16S34, 20C05
Mots-clés : generalized dihedral group; Burnside ring; augmentation ideal; augmentation quotient
Mots-clés : generalized dihedral group; Burnside ring; augmentation ideal; augmentation quotient
@article{10_1007_s10587_016_0316_4, author = {Chang, Shan}, title = {Augmentation quotients for {Burnside} rings of generalized dihedral groups}, journal = {Czechoslovak Mathematical Journal}, pages = {1165--1175}, publisher = {mathdoc}, volume = {66}, number = {4}, year = {2016}, doi = {10.1007/s10587-016-0316-4}, mrnumber = {3572929}, zbl = {06674868}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0316-4/} }
TY - JOUR AU - Chang, Shan TI - Augmentation quotients for Burnside rings of generalized dihedral groups JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1165 EP - 1175 VL - 66 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0316-4/ DO - 10.1007/s10587-016-0316-4 LA - en ID - 10_1007_s10587_016_0316_4 ER -
%0 Journal Article %A Chang, Shan %T Augmentation quotients for Burnside rings of generalized dihedral groups %J Czechoslovak Mathematical Journal %D 2016 %P 1165-1175 %V 66 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0316-4/ %R 10.1007/s10587-016-0316-4 %G en %F 10_1007_s10587_016_0316_4
Chang, Shan. Augmentation quotients for Burnside rings of generalized dihedral groups. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1165-1175. doi : 10.1007/s10587-016-0316-4. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0316-4/
Cité par Sources :