Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1079-1101.
Voir la notice de l'article dans Czech Digital Mathematics Library
The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces $L_{p}(\mathbb {R}^d)$ (in the case $p >1$), but (in the case when $1/p(\cdot )$ is log-Hölder continuous and $p_{-} = \inf \{ p(x) \colon x \in \mathbb R^d \} > 1$) on the variable Lebesgue spaces $L_{p(\cdot )}(\mathbb {R}^d)$, too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type $(1,1)$. In the present note we generalize Besicovitch's covering theorem for the so-called $\gamma $-rectangles. We introduce a general maximal operator $M_{s}^{\gamma ,\delta }$ and with the help of generalized $\Phi $-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function $1/p(\cdot )$ is log-Hölder continuous and $p_{-} > s$, where $1 \leq s \leq \infty $ is arbitrary (or $p_{-} \geq s$), then the maximal operator $M_{s}^{\gamma ,\delta }$ is bounded on the space $L_{p(\cdot )}(\mathbb {R}^d)$ (or the maximal operator is of weak-type $(p(\cdot ),p(\cdot ))$).
DOI :
10.1007/s10587-016-0311-9
Classification :
42B25, 42B35, 52C17
Mots-clés : variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch's covering theorem; weak-type inequality; strong-type inequality
Mots-clés : variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch's covering theorem; weak-type inequality; strong-type inequality
@article{10_1007_s10587_016_0311_9, author = {Szarvas, Krist\'of and Weisz, Ferenc}, title = {Weak- and strong-type inequality for the cone-like maximal operator in variable {Lebesgue} spaces}, journal = {Czechoslovak Mathematical Journal}, pages = {1079--1101}, publisher = {mathdoc}, volume = {66}, number = {4}, year = {2016}, doi = {10.1007/s10587-016-0311-9}, mrnumber = {3572924}, zbl = {06674863}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0311-9/} }
TY - JOUR AU - Szarvas, Kristóf AU - Weisz, Ferenc TI - Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1079 EP - 1101 VL - 66 IS - 4 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0311-9/ DO - 10.1007/s10587-016-0311-9 LA - en ID - 10_1007_s10587_016_0311_9 ER -
%0 Journal Article %A Szarvas, Kristóf %A Weisz, Ferenc %T Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces %J Czechoslovak Mathematical Journal %D 2016 %P 1079-1101 %V 66 %N 4 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0311-9/ %R 10.1007/s10587-016-0311-9 %G en %F 10_1007_s10587_016_0311_9
Szarvas, Kristóf; Weisz, Ferenc. Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1079-1101. doi : 10.1007/s10587-016-0311-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0311-9/
Cité par Sources :