Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1079-1101.

Voir la notice de l'article dans Czech Digital Mathematics Library

The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces $L_{p}(\mathbb {R}^d)$ (in the case $p >1$), but (in the case when $1/p(\cdot )$ is log-Hölder continuous and $p_{-} = \inf \{ p(x) \colon x \in \mathbb R^d \} > 1$) on the variable Lebesgue spaces $L_{p(\cdot )}(\mathbb {R}^d)$, too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type $(1,1)$. In the present note we generalize Besicovitch's covering theorem for the so-called $\gamma $-rectangles. We introduce a general maximal operator $M_{s}^{\gamma ,\delta }$ and with the help of generalized $\Phi $-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function $1/p(\cdot )$ is log-Hölder continuous and $p_{-} > s$, where $1 \leq s \leq \infty $ is arbitrary (or $p_{-} \geq s$), then the maximal operator $M_{s}^{\gamma ,\delta }$ is bounded on the space $L_{p(\cdot )}(\mathbb {R}^d)$ (or the maximal operator is of weak-type $(p(\cdot ),p(\cdot ))$).
DOI : 10.1007/s10587-016-0311-9
Classification : 42B25, 42B35, 52C17
Mots-clés : variable Lebesgue space; maximal operator; $\gamma $-rectangle; Besicovitch's covering theorem; weak-type inequality; strong-type inequality
@article{10_1007_s10587_016_0311_9,
     author = {Szarvas, Krist\'of and Weisz, Ferenc},
     title = {Weak- and strong-type inequality for the cone-like maximal operator in variable {Lebesgue} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1079--1101},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2016},
     doi = {10.1007/s10587-016-0311-9},
     mrnumber = {3572924},
     zbl = {06674863},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0311-9/}
}
TY  - JOUR
AU  - Szarvas, Kristóf
AU  - Weisz, Ferenc
TI  - Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 1079
EP  - 1101
VL  - 66
IS  - 4
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0311-9/
DO  - 10.1007/s10587-016-0311-9
LA  - en
ID  - 10_1007_s10587_016_0311_9
ER  - 
%0 Journal Article
%A Szarvas, Kristóf
%A Weisz, Ferenc
%T Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
%J Czechoslovak Mathematical Journal
%D 2016
%P 1079-1101
%V 66
%N 4
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0311-9/
%R 10.1007/s10587-016-0311-9
%G en
%F 10_1007_s10587_016_0311_9
Szarvas, Kristóf; Weisz, Ferenc. Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 4, pp. 1079-1101. doi : 10.1007/s10587-016-0311-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0311-9/

Cité par Sources :