Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1027-1038.
Voir la notice de l'article dans Czech Digital Mathematics Library
Consider the $n\times n$ matrix with $(i,j)$'th entry $\gcd {(i,j)}$. Its largest eigenvalue $\lambda _n$ and sum of entries $s_n$ satisfy $\lambda _n>s_n/n$. Because $s_n$ cannot be expressed algebraically as a function of $n$, we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that $\lambda _n>6\pi ^{-2}n\log {n}$ for all $n$. If $n$ is large enough, this follows from F. Balatoni (1969).
DOI :
10.1007/s10587-016-0307-5
Classification :
11A05, 15A42, 15B36
Mots-clés : eigenvalue bounds; greatest common divisor matrix
Mots-clés : eigenvalue bounds; greatest common divisor matrix
@article{10_1007_s10587_016_0307_5, author = {Merikoski, Jorma K.}, title = {Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$}, journal = {Czechoslovak Mathematical Journal}, pages = {1027--1038}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2016}, doi = {10.1007/s10587-016-0307-5}, mrnumber = {3556882}, zbl = {06644048}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0307-5/} }
TY - JOUR AU - Merikoski, Jorma K. TI - Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$ JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1027 EP - 1038 VL - 66 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0307-5/ DO - 10.1007/s10587-016-0307-5 LA - en ID - 10_1007_s10587_016_0307_5 ER -
%0 Journal Article %A Merikoski, Jorma K. %T Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$ %J Czechoslovak Mathematical Journal %D 2016 %P 1027-1038 %V 66 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0307-5/ %R 10.1007/s10587-016-0307-5 %G en %F 10_1007_s10587_016_0307_5
Merikoski, Jorma K. Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1027-1038. doi : 10.1007/s10587-016-0307-5. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0307-5/
Cité par Sources :