The real symmetric matrices of odd order with a P-set of maximum size
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1007-1026.
Voir la notice de l'article dans Czech Digital Mathematics Library
Suppose that $A$ is a real symmetric matrix of order $n$. Denote by $m_A(0)$ the nullity of $A$. For a nonempty subset $\alpha $ of $\{1,2,\ldots ,n\}$, let $A(\alpha )$ be the principal submatrix of $A$ obtained from $A$ by deleting the rows and columns indexed by $\alpha $. When $m_{A(\alpha )}(0)=m_{A}(0)+|\alpha |$, we call $\alpha $ a P-set of $A$. It is known that every P-set of $A$ contains at most $\lfloor {n}/{2} \rfloor $ elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step to the full characterization of these graphs of odd order, we establish some conditions for such graphs $G$ under which there is a real symmetric matrix $A$ whose graph is $G$ and contains a P-set of size ${(n-1)}/{2}$.
DOI :
10.1007/s10587-016-0306-6
Classification :
05C50, 15A18
Mots-clés : real symmetric matrix; graph; multiplicity of eigenvalues; P-set; P-vertices
Mots-clés : real symmetric matrix; graph; multiplicity of eigenvalues; P-set; P-vertices
@article{10_1007_s10587_016_0306_6, author = {Du, Zhibin and da Fonseca, Carlos M.}, title = {The real symmetric matrices of odd order with a {P-set} of maximum size}, journal = {Czechoslovak Mathematical Journal}, pages = {1007--1026}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2016}, doi = {10.1007/s10587-016-0306-6}, mrnumber = {3556881}, zbl = {06644047}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0306-6/} }
TY - JOUR AU - Du, Zhibin AU - da Fonseca, Carlos M. TI - The real symmetric matrices of odd order with a P-set of maximum size JO - Czechoslovak Mathematical Journal PY - 2016 SP - 1007 EP - 1026 VL - 66 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0306-6/ DO - 10.1007/s10587-016-0306-6 LA - en ID - 10_1007_s10587_016_0306_6 ER -
%0 Journal Article %A Du, Zhibin %A da Fonseca, Carlos M. %T The real symmetric matrices of odd order with a P-set of maximum size %J Czechoslovak Mathematical Journal %D 2016 %P 1007-1026 %V 66 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0306-6/ %R 10.1007/s10587-016-0306-6 %G en %F 10_1007_s10587_016_0306_6
Du, Zhibin; da Fonseca, Carlos M. The real symmetric matrices of odd order with a P-set of maximum size. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 1007-1026. doi : 10.1007/s10587-016-0306-6. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0306-6/
Cité par Sources :