Rank decomposition in zero pattern matrix algebras
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 987-1005.

Voir la notice de l'article dans Czech Digital Mathematics Library

For a block upper triangular matrix, a necessary and sufficient condition has been given to let it be the sum of block upper rectangular matrices satisfying certain rank constraints; see H. Bart, A. P. M. Wagelmans (2000). The proof involves elements from integer programming and employs Farkas' lemma. The algebra of block upper triangular matrices can be viewed as a matrix algebra determined by a pattern of zeros. The present note is concerned with the question whether the decomposition result referred to above can be extended to other zero pattern matrix algebras. It is shown that such a generalization does indeed hold for certain digraphs determining the pattern of zeros. The digraphs in question can be characterized in terms of forests, i.e., disjoint unions of rooted trees.
DOI : 10.1007/s10587-016-0305-7
Classification : 05C05, 05C50, 15A21
Mots-clés : block upper triangularity; additive decomposition; rank constraints; zero pattern matrix algebra; preorder; partial order; Hasse diagram; rooted tree; out-tree; in-tree
@article{10_1007_s10587_016_0305_7,
     author = {Bart, Harm and Ehrhardt, Torsten and Silbermann, Bernd},
     title = {Rank decomposition in zero pattern matrix algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {987--1005},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2016},
     doi = {10.1007/s10587-016-0305-7},
     mrnumber = {3556880},
     zbl = {06644046},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0305-7/}
}
TY  - JOUR
AU  - Bart, Harm
AU  - Ehrhardt, Torsten
AU  - Silbermann, Bernd
TI  - Rank decomposition in zero pattern matrix algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 987
EP  - 1005
VL  - 66
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0305-7/
DO  - 10.1007/s10587-016-0305-7
LA  - en
ID  - 10_1007_s10587_016_0305_7
ER  - 
%0 Journal Article
%A Bart, Harm
%A Ehrhardt, Torsten
%A Silbermann, Bernd
%T Rank decomposition in zero pattern matrix algebras
%J Czechoslovak Mathematical Journal
%D 2016
%P 987-1005
%V 66
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0305-7/
%R 10.1007/s10587-016-0305-7
%G en
%F 10_1007_s10587_016_0305_7
Bart, Harm; Ehrhardt, Torsten; Silbermann, Bernd. Rank decomposition in zero pattern matrix algebras. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 987-1005. doi : 10.1007/s10587-016-0305-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0305-7/

Cité par Sources :