Spectral radius and Hamiltonicity of graphs with large minimum degree
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 925-940.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let G be a graph of order n and λ(G) the spectral radius of its adjacency matrix. We extend some recent results on sufficient conditions for Hamiltonian paths and cycles in G. One of the main results of the paper is the following theorem: \endgraf Let k2, nk3+k+4, and let G be a graph of order n, with minimum degree δ(G)k. If \[ \lambda ( G) \geq n-k-1, \] then G has a Hamiltonian cycle, unless G=K1(Knk1+Kk) or G=Kk(Kn2k+K¯k).
DOI : 10.1007/s10587-016-0301-y
Classification : 05C35, 05C50
Mots-clés : Hamiltonian cycle; Hamiltonian path; minimum degree; spectral radius
@article{10_1007_s10587_016_0301_y,
     author = {Nikiforov, Vladimir},
     title = {Spectral radius and {Hamiltonicity} of graphs with large minimum degree},
     journal = {Czechoslovak Mathematical Journal},
     pages = {925--940},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2016},
     doi = {10.1007/s10587-016-0301-y},
     mrnumber = {3556876},
     zbl = {06644042},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0301-y/}
}
TY  - JOUR
AU  - Nikiforov, Vladimir
TI  - Spectral radius and Hamiltonicity of graphs with large minimum degree
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 925
EP  - 940
VL  - 66
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0301-y/
DO  - 10.1007/s10587-016-0301-y
LA  - en
ID  - 10_1007_s10587_016_0301_y
ER  - 
%0 Journal Article
%A Nikiforov, Vladimir
%T Spectral radius and Hamiltonicity of graphs with large minimum degree
%J Czechoslovak Mathematical Journal
%D 2016
%P 925-940
%V 66
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0301-y/
%R 10.1007/s10587-016-0301-y
%G en
%F 10_1007_s10587_016_0301_y
Nikiforov, Vladimir. Spectral radius and Hamiltonicity of graphs with large minimum degree. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 925-940. doi : 10.1007/s10587-016-0301-y. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0301-y/

Cité par Sources :