Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 913-924.
Voir la notice de l'article dans Czech Digital Mathematics Library
The eigenvalues of graphs are related to many of its combinatorial properties. In his fundamental work, Fiedler showed the close connections between the Laplacian eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity. \endgraf We present some new results describing the connections between the spectrum of a regular graph and other combinatorial parameters such as its generalized connectivity, toughness, and the existence of spanning trees with bounded degree.
DOI :
10.1007/s10587-016-0300-z
Classification :
05C05, 05C40, 05C42, 05C50, 05E99, 15A18
Mots-clés : spectral graph theory; eigenvalue; connectivity; toughness; spanning $k$-tree
Mots-clés : spectral graph theory; eigenvalue; connectivity; toughness; spanning $k$-tree
@article{10_1007_s10587_016_0300_z, author = {Cioab\u{a}, Sebastian M. and Gu, Xiaofeng}, title = {Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs}, journal = {Czechoslovak Mathematical Journal}, pages = {913--924}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2016}, doi = {10.1007/s10587-016-0300-z}, mrnumber = {3556875}, zbl = {06644041}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0300-z/} }
TY - JOUR AU - Cioabă, Sebastian M. AU - Gu, Xiaofeng TI - Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs JO - Czechoslovak Mathematical Journal PY - 2016 SP - 913 EP - 924 VL - 66 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0300-z/ DO - 10.1007/s10587-016-0300-z LA - en ID - 10_1007_s10587_016_0300_z ER -
%0 Journal Article %A Cioabă, Sebastian M. %A Gu, Xiaofeng %T Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs %J Czechoslovak Mathematical Journal %D 2016 %P 913-924 %V 66 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0300-z/ %R 10.1007/s10587-016-0300-z %G en %F 10_1007_s10587_016_0300_z
Cioabă, Sebastian M.; Gu, Xiaofeng. Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 913-924. doi : 10.1007/s10587-016-0300-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0300-z/
Cité par Sources :