Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 913-924.

Voir la notice de l'article dans Czech Digital Mathematics Library

The eigenvalues of graphs are related to many of its combinatorial properties. In his fundamental work, Fiedler showed the close connections between the Laplacian eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity. \endgraf We present some new results describing the connections between the spectrum of a regular graph and other combinatorial parameters such as its generalized connectivity, toughness, and the existence of spanning trees with bounded degree.
DOI : 10.1007/s10587-016-0300-z
Classification : 05C05, 05C40, 05C42, 05C50, 05E99, 15A18
Mots-clés : spectral graph theory; eigenvalue; connectivity; toughness; spanning $k$-tree
@article{10_1007_s10587_016_0300_z,
     author = {Cioab\u{a}, Sebastian M. and Gu, Xiaofeng},
     title = {Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {913--924},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2016},
     doi = {10.1007/s10587-016-0300-z},
     mrnumber = {3556875},
     zbl = {06644041},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0300-z/}
}
TY  - JOUR
AU  - Cioabă, Sebastian M.
AU  - Gu, Xiaofeng
TI  - Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 913
EP  - 924
VL  - 66
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0300-z/
DO  - 10.1007/s10587-016-0300-z
LA  - en
ID  - 10_1007_s10587_016_0300_z
ER  - 
%0 Journal Article
%A Cioabă, Sebastian M.
%A Gu, Xiaofeng
%T Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs
%J Czechoslovak Mathematical Journal
%D 2016
%P 913-924
%V 66
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0300-z/
%R 10.1007/s10587-016-0300-z
%G en
%F 10_1007_s10587_016_0300_z
Cioabă, Sebastian M.; Gu, Xiaofeng. Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 913-924. doi : 10.1007/s10587-016-0300-z. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0300-z/

Cité par Sources :