Rational realization of the minimum ranks of nonnegative sign pattern matrices
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 895-911.
Voir la notice de l'article dans Czech Digital Mathematics Library
A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set $\{+, -, 0\}$ ($ \{ +, 0 \}$, respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix $\cal A$ is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of $\cal A$. Using a correspondence between sign patterns with minimum rank $r\geq 2$ and point-hyperplane configurations in $\mathbb R^{r-1}$ and Steinitz's theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every $d$-polytope determines a nonnegative sign pattern with minimum rank $d+1$ that has a $(d+1)\times (d+1)$ triangular submatrix with all diagonal entries positive. It is also shown that there are at most $\min \{ 3m, 3n \}$ zero entries in any condensed nonnegative $m \times n$ sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.
DOI :
10.1007/s10587-016-0299-1
Classification :
15A23, 15B35, 15B36, 52C35
Mots-clés : sign pattern (matrix); nonnegative sign pattern; minimum rank; convex polytope; rational minimum rank; rational realization; integer matrix; condensed sign pattern; point-hyperplane configuration
Mots-clés : sign pattern (matrix); nonnegative sign pattern; minimum rank; convex polytope; rational minimum rank; rational realization; integer matrix; condensed sign pattern; point-hyperplane configuration
@article{10_1007_s10587_016_0299_1, author = {Fang, Wei and Gao, Wei and Gao, Yubin and Gong, Fei and Jing, Guangming and Li, Zhongshan and Shao, Yanling and Zhang, Lihua}, title = {Rational realization of the minimum ranks of nonnegative sign pattern matrices}, journal = {Czechoslovak Mathematical Journal}, pages = {895--911}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2016}, doi = {10.1007/s10587-016-0299-1}, mrnumber = {3556874}, zbl = {06644040}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0299-1/} }
TY - JOUR AU - Fang, Wei AU - Gao, Wei AU - Gao, Yubin AU - Gong, Fei AU - Jing, Guangming AU - Li, Zhongshan AU - Shao, Yanling AU - Zhang, Lihua TI - Rational realization of the minimum ranks of nonnegative sign pattern matrices JO - Czechoslovak Mathematical Journal PY - 2016 SP - 895 EP - 911 VL - 66 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0299-1/ DO - 10.1007/s10587-016-0299-1 LA - en ID - 10_1007_s10587_016_0299_1 ER -
%0 Journal Article %A Fang, Wei %A Gao, Wei %A Gao, Yubin %A Gong, Fei %A Jing, Guangming %A Li, Zhongshan %A Shao, Yanling %A Zhang, Lihua %T Rational realization of the minimum ranks of nonnegative sign pattern matrices %J Czechoslovak Mathematical Journal %D 2016 %P 895-911 %V 66 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0299-1/ %R 10.1007/s10587-016-0299-1 %G en %F 10_1007_s10587_016_0299_1
Fang, Wei; Gao, Wei; Gao, Yubin; Gong, Fei; Jing, Guangming; Li, Zhongshan; Shao, Yanling; Zhang, Lihua. Rational realization of the minimum ranks of nonnegative sign pattern matrices. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 895-911. doi : 10.1007/s10587-016-0299-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0299-1/
Cité par Sources :