Exponential polynomial inequalities and monomial sum inequalities in $\rm p$-Newton sequences
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 793-819.
Voir la notice de l'article dans Czech Digital Mathematics Library
We consider inequalities between sums of monomials that hold for all p-Newton sequences. This continues recent work in which inequalities between sums of two, two-term monomials were combinatorially characterized (via the indices involved). Our focus is on the case of sums of three, two-term monomials, but this is very much more complicated. We develop and use a theory of exponential polynomial inequalities to give a sufficient condition for general monomial sum inequalities, and use the sufficient condition in two ways. The sufficient condition is necessary in the case of sums of two monomials but is not known if it is for sums of more. A complete description of the desired inequalities is given for Newton sequences of less than 5 terms.
DOI :
10.1007/s10587-016-0293-7
Classification :
11C20, 15A15, 15A18, 15A45
Mots-clés : exponential polynomial; Newton inequality; Newton coefficients; p-Newton sequence
Mots-clés : exponential polynomial; Newton inequality; Newton coefficients; p-Newton sequence
@article{10_1007_s10587_016_0293_7, author = {Johnson, Charles R. and Mariju\'an, Carlos and Pisonero, Miriam and Yeh, Michael}, title = {Exponential polynomial inequalities and monomial sum inequalities in $\rm p${-Newton} sequences}, journal = {Czechoslovak Mathematical Journal}, pages = {793--819}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2016}, doi = {10.1007/s10587-016-0293-7}, mrnumber = {3556868}, zbl = {06644034}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0293-7/} }
TY - JOUR AU - Johnson, Charles R. AU - Marijuán, Carlos AU - Pisonero, Miriam AU - Yeh, Michael TI - Exponential polynomial inequalities and monomial sum inequalities in $\rm p$-Newton sequences JO - Czechoslovak Mathematical Journal PY - 2016 SP - 793 EP - 819 VL - 66 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0293-7/ DO - 10.1007/s10587-016-0293-7 LA - en ID - 10_1007_s10587_016_0293_7 ER -
%0 Journal Article %A Johnson, Charles R. %A Marijuán, Carlos %A Pisonero, Miriam %A Yeh, Michael %T Exponential polynomial inequalities and monomial sum inequalities in $\rm p$-Newton sequences %J Czechoslovak Mathematical Journal %D 2016 %P 793-819 %V 66 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0293-7/ %R 10.1007/s10587-016-0293-7 %G en %F 10_1007_s10587_016_0293_7
Johnson, Charles R.; Marijuán, Carlos; Pisonero, Miriam; Yeh, Michael. Exponential polynomial inequalities and monomial sum inequalities in $\rm p$-Newton sequences. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 793-819. doi : 10.1007/s10587-016-0293-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0293-7/
Cité par Sources :