$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 671-679.
Voir la notice de l'article dans Czech Digital Mathematics Library
An $n\times n$ sign pattern $\mathcal {A}$ is said to be potentially nilpotent if there exists a nilpotent real matrix $B$ with the same sign pattern as $\mathcal {A}$. Let $\mathcal {D}_{n,r}$ be an $n\times n$ sign pattern with $2\leq r \leq n$ such that the superdiagonal and the $(n,n)$ entries are positive, the $(i,1)$ $(i=1, \dots , r)$ and $(i,i-r+1)$ $(i=r+1, \dots , n)$ entries are negative, and zeros elsewhere. We prove that for $r\geq 3$ and $n \geq 4r-2$, the sign pattern $\mathcal {D}_{n,r}$ is not potentially nilpotent, and so not spectrally arbitrary.
DOI :
10.1007/s10587-016-0285-7
Classification :
05C50, 15A18
Mots-clés : sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern
Mots-clés : sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern
@article{10_1007_s10587_016_0285_7, author = {Shao, Yanling and Gao, Yubin and Gao, Wei}, title = {$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$}, journal = {Czechoslovak Mathematical Journal}, pages = {671--679}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2016}, doi = {10.1007/s10587-016-0285-7}, mrnumber = {3556860}, zbl = {06644026}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0285-7/} }
TY - JOUR AU - Shao, Yanling AU - Gao, Yubin AU - Gao, Wei TI - $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$ JO - Czechoslovak Mathematical Journal PY - 2016 SP - 671 EP - 679 VL - 66 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0285-7/ DO - 10.1007/s10587-016-0285-7 LA - en ID - 10_1007_s10587_016_0285_7 ER -
%0 Journal Article %A Shao, Yanling %A Gao, Yubin %A Gao, Wei %T $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$ %J Czechoslovak Mathematical Journal %D 2016 %P 671-679 %V 66 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0285-7/ %R 10.1007/s10587-016-0285-7 %G en %F 10_1007_s10587_016_0285_7
Shao, Yanling; Gao, Yubin; Gao, Wei. $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 671-679. doi : 10.1007/s10587-016-0285-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0285-7/
Cité par Sources :