Dn,r is not potentially nilpotent for n4r2
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 671-679.

Voir la notice de l'article dans Czech Digital Mathematics Library

An n×n sign pattern A is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as A. Let Dn,r be an n×n sign pattern with 2rn such that the superdiagonal and the (n,n) entries are positive, the (i,1) (i=1,,r) and (i,ir+1) (i=r+1,,n) entries are negative, and zeros elsewhere. We prove that for r3 and n4r2, the sign pattern Dn,r is not potentially nilpotent, and so not spectrally arbitrary.
DOI : 10.1007/s10587-016-0285-7
Classification : 05C50, 15A18
Mots-clés : sign pattern; potentially nilpotent pattern; spectrally arbitrary pattern
@article{10_1007_s10587_016_0285_7,
     author = {Shao, Yanling and Gao, Yubin and Gao, Wei},
     title = {$\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {671--679},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2016},
     doi = {10.1007/s10587-016-0285-7},
     mrnumber = {3556860},
     zbl = {06644026},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0285-7/}
}
TY  - JOUR
AU  - Shao, Yanling
AU  - Gao, Yubin
AU  - Gao, Wei
TI  - $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 671
EP  - 679
VL  - 66
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0285-7/
DO  - 10.1007/s10587-016-0285-7
LA  - en
ID  - 10_1007_s10587_016_0285_7
ER  - 
%0 Journal Article
%A Shao, Yanling
%A Gao, Yubin
%A Gao, Wei
%T $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$
%J Czechoslovak Mathematical Journal
%D 2016
%P 671-679
%V 66
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0285-7/
%R 10.1007/s10587-016-0285-7
%G en
%F 10_1007_s10587_016_0285_7
Shao, Yanling; Gao, Yubin; Gao, Wei. $\mathcal {D}_{n,r}$ is not potentially nilpotent for $n \geq 4r-2$. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 671-679. doi : 10.1007/s10587-016-0285-7. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0285-7/

Cité par Sources :