G-matrices, $J$-orthogonal matrices, and their sign patterns
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 653-670.

Voir la notice de l'article dans Czech Digital Mathematics Library

A real matrix $A$ is a G-matrix if $A$ is nonsingular and there exist nonsingular diagonal matrices $D_1$ and $D_2$ such that $A^{\rm -T}= D_1 AD_2$, where $A^{\rm -T}$ denotes the transpose of the inverse of $A$. Denote by $J = {\rm diag}(\pm 1)$ a diagonal (signature) matrix, each of whose diagonal entries is $+1$ or $-1$. A nonsingular real matrix $Q$ is called $J$-orthogonal if $Q^{\rm T}J Q=\nobreak J$. Many connections are established between these matrices. In particular, a matrix $A$ is a G-matrix if and only if $A$ is diagonally (with positive diagonals) equivalent to a column permutation of a $J$-orthogonal matrix. An investigation into the sign patterns of the $J$-orthogonal matrices is initiated. It is observed that the sign patterns of the G-matrices are exactly the column permutations of the sign patterns of the $J$-orthogonal matrices. Some interesting constructions of certain $J$-orthogonal matrices are exhibited. It is shown that every symmetric staircase sign pattern matrix allows a $J$-orthogonal matrix. Sign potentially $J$-orthogonal conditions are also considered. Some examples and open questions are provided.
DOI : 10.1007/s10587-016-0284-8
Classification : 15A15, 15A23, 15A80
Mots-clés : G-matrix; $J$-orthogonal matrix; Cauchy matrix; sign pattern matrix
@article{10_1007_s10587_016_0284_8,
     author = {Hall, Frank J. and Rozlo\v{z}n{\'\i}k, Miroslav},
     title = {G-matrices, $J$-orthogonal matrices, and their sign patterns},
     journal = {Czechoslovak Mathematical Journal},
     pages = {653--670},
     publisher = {mathdoc},
     volume = {66},
     number = {3},
     year = {2016},
     doi = {10.1007/s10587-016-0284-8},
     mrnumber = {3556859},
     zbl = {06644025},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0284-8/}
}
TY  - JOUR
AU  - Hall, Frank J.
AU  - Rozložník, Miroslav
TI  - G-matrices, $J$-orthogonal matrices, and their sign patterns
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 653
EP  - 670
VL  - 66
IS  - 3
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0284-8/
DO  - 10.1007/s10587-016-0284-8
LA  - en
ID  - 10_1007_s10587_016_0284_8
ER  - 
%0 Journal Article
%A Hall, Frank J.
%A Rozložník, Miroslav
%T G-matrices, $J$-orthogonal matrices, and their sign patterns
%J Czechoslovak Mathematical Journal
%D 2016
%P 653-670
%V 66
%N 3
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0284-8/
%R 10.1007/s10587-016-0284-8
%G en
%F 10_1007_s10587_016_0284_8
Hall, Frank J.; Rozložník, Miroslav. G-matrices, $J$-orthogonal matrices, and their sign patterns. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 653-670. doi : 10.1007/s10587-016-0284-8. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0284-8/

Cité par Sources :