G-matrices, $J$-orthogonal matrices, and their sign patterns
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 653-670.
Voir la notice de l'article dans Czech Digital Mathematics Library
A real matrix $A$ is a G-matrix if $A$ is nonsingular and there exist nonsingular diagonal matrices $D_1$ and $D_2$ such that $A^{\rm -T}= D_1 AD_2$, where $A^{\rm -T}$ denotes the transpose of the inverse of $A$. Denote by $J = {\rm diag}(\pm 1)$ a diagonal (signature) matrix, each of whose diagonal entries is $+1$ or $-1$. A nonsingular real matrix $Q$ is called $J$-orthogonal if $Q^{\rm T}J Q=\nobreak J$. Many connections are established between these matrices. In particular, a matrix $A$ is a G-matrix if and only if $A$ is diagonally (with positive diagonals) equivalent to a column permutation of a $J$-orthogonal matrix. An investigation into the sign patterns of the $J$-orthogonal matrices is initiated. It is observed that the sign patterns of the G-matrices are exactly the column permutations of the sign patterns of the $J$-orthogonal matrices. Some interesting constructions of certain $J$-orthogonal matrices are exhibited. It is shown that every symmetric staircase sign pattern matrix allows a $J$-orthogonal matrix. Sign potentially $J$-orthogonal conditions are also considered. Some examples and open questions are provided.
DOI :
10.1007/s10587-016-0284-8
Classification :
15A15, 15A23, 15A80
Mots-clés : G-matrix; $J$-orthogonal matrix; Cauchy matrix; sign pattern matrix
Mots-clés : G-matrix; $J$-orthogonal matrix; Cauchy matrix; sign pattern matrix
@article{10_1007_s10587_016_0284_8, author = {Hall, Frank J. and Rozlo\v{z}n{\'\i}k, Miroslav}, title = {G-matrices, $J$-orthogonal matrices, and their sign patterns}, journal = {Czechoslovak Mathematical Journal}, pages = {653--670}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2016}, doi = {10.1007/s10587-016-0284-8}, mrnumber = {3556859}, zbl = {06644025}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0284-8/} }
TY - JOUR AU - Hall, Frank J. AU - Rozložník, Miroslav TI - G-matrices, $J$-orthogonal matrices, and their sign patterns JO - Czechoslovak Mathematical Journal PY - 2016 SP - 653 EP - 670 VL - 66 IS - 3 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0284-8/ DO - 10.1007/s10587-016-0284-8 LA - en ID - 10_1007_s10587_016_0284_8 ER -
%0 Journal Article %A Hall, Frank J. %A Rozložník, Miroslav %T G-matrices, $J$-orthogonal matrices, and their sign patterns %J Czechoslovak Mathematical Journal %D 2016 %P 653-670 %V 66 %N 3 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0284-8/ %R 10.1007/s10587-016-0284-8 %G en %F 10_1007_s10587_016_0284_8
Hall, Frank J.; Rozložník, Miroslav. G-matrices, $J$-orthogonal matrices, and their sign patterns. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 3, pp. 653-670. doi : 10.1007/s10587-016-0284-8. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0284-8/
Cité par Sources :