Polycyclic groups with automorphisms of order four
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 575-582.

Voir la notice de l'article dans Czech Digital Mathematics Library

In this paper, we study the structure of polycyclic groups admitting an automorphism of order four on the basis of Neumann's result, and prove that if $\alpha $ is an automorphism of order four of a polycyclic group $G$ and the map $\varphi \colon G\rightarrow G$ defined by $g^{\varphi }=[g,\alpha ]$ is surjective, then $G$ contains a characteristic subgroup $H$ of finite index such that the second derived subgroup $H''$ is included in the centre of $H$ and $C_{H}(\alpha ^{2})$ is abelian, both $C_{G}(\alpha ^{2})$ and $G/[G,\alpha ^{2}]$ are abelian-by-finite. These results extend recent and classical results in the literature.
DOI : 10.1007/s10587-016-0276-8
Classification : 20E36
Mots-clés : polycyclic group; regular automorphism; surjectivity
@article{10_1007_s10587_016_0276_8,
     author = {Xu, Tao and Zhou, Fang and Liu, Heguo},
     title = {Polycyclic groups with automorphisms of order four},
     journal = {Czechoslovak Mathematical Journal},
     pages = {575--582},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2016},
     doi = {10.1007/s10587-016-0276-8},
     mrnumber = {3519622},
     zbl = {06604487},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0276-8/}
}
TY  - JOUR
AU  - Xu, Tao
AU  - Zhou, Fang
AU  - Liu, Heguo
TI  - Polycyclic groups with automorphisms of order four
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 575
EP  - 582
VL  - 66
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0276-8/
DO  - 10.1007/s10587-016-0276-8
LA  - en
ID  - 10_1007_s10587_016_0276_8
ER  - 
%0 Journal Article
%A Xu, Tao
%A Zhou, Fang
%A Liu, Heguo
%T Polycyclic groups with automorphisms of order four
%J Czechoslovak Mathematical Journal
%D 2016
%P 575-582
%V 66
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0276-8/
%R 10.1007/s10587-016-0276-8
%G en
%F 10_1007_s10587_016_0276_8
Xu, Tao; Zhou, Fang; Liu, Heguo. Polycyclic groups with automorphisms of order four. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 575-582. doi : 10.1007/s10587-016-0276-8. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0276-8/

Cité par Sources :