Torsion units for some almost simple groups
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 561-574.
Voir la notice de l'article dans Czech Digital Mathematics Library
We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group $\rm PSL(2,11)$. Additionally we prove that the Prime graph question is true for the automorphism group of the simple group $\rm PSL(2,13)$.
DOI :
10.1007/s10587-016-0275-9
Classification :
16S34, 16U60, 20C05
Mots-clés : Zassenhaus conjecture; torsion unit; partial augmentation; integral group ring
Mots-clés : Zassenhaus conjecture; torsion unit; partial augmentation; integral group ring
@article{10_1007_s10587_016_0275_9, author = {Gildea, Joe}, title = {Torsion units for some almost simple groups}, journal = {Czechoslovak Mathematical Journal}, pages = {561--574}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2016}, doi = {10.1007/s10587-016-0275-9}, mrnumber = {3519621}, zbl = {06604486}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0275-9/} }
TY - JOUR AU - Gildea, Joe TI - Torsion units for some almost simple groups JO - Czechoslovak Mathematical Journal PY - 2016 SP - 561 EP - 574 VL - 66 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0275-9/ DO - 10.1007/s10587-016-0275-9 LA - en ID - 10_1007_s10587_016_0275_9 ER -
Gildea, Joe. Torsion units for some almost simple groups. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 561-574. doi : 10.1007/s10587-016-0275-9. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0275-9/
Cité par Sources :