Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 481-492.
Voir la notice de l'article dans Czech Digital Mathematics Library
Let $R$ be a prime ring of characteristic different from 2 and 3, $Q_r$ its right Martindale quotient ring, $C$ its extended centroid, $L$ a non-central Lie ideal of $R$ and $n\geq 1$ a fixed positive integer. Let $\alpha $ be an automorphism of the ring $R$. An additive map $D\colon R\to R$ is called an $\alpha $-derivation (or a skew derivation) on $R$ if $D(xy)=D(x)y+\alpha (x)D(y)$ for all $x,y\in R$. An additive mapping $F\colon R\to R$ is called a generalized $\alpha $-derivation (or a generalized skew derivation) on $R$ if there exists a skew derivation $D$ on $R$ such that $F(xy)=F(x)y+\alpha (x)D(y)$ for all $x,y\in R$. We prove that, if $F$ is a nonzero generalized skew derivation of $R$ such that $F(x)\* [F(x),x]^n = 0$ for any $x\in L$, then either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$, or $R\subseteq M_2(C)$ and there exist $a\in Q_r$ and $\lambda \in C$ such that $F(x)=ax+xa+\lambda x$ for any $x\in R$.
DOI :
10.1007/s10587-016-0270-1
Classification :
16N60, 16W25
Mots-clés : generalized skew derivation; Lie ideal; prime ring
Mots-clés : generalized skew derivation; Lie ideal; prime ring
@article{10_1007_s10587_016_0270_1, author = {de Filippis, Vincenzo}, title = {Annihilating and power-commuting generalized skew derivations on {Lie} ideals in prime rings}, journal = {Czechoslovak Mathematical Journal}, pages = {481--492}, publisher = {mathdoc}, volume = {66}, number = {2}, year = {2016}, doi = {10.1007/s10587-016-0270-1}, mrnumber = {3519616}, zbl = {06604481}, language = {en}, url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0270-1/} }
TY - JOUR AU - de Filippis, Vincenzo TI - Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings JO - Czechoslovak Mathematical Journal PY - 2016 SP - 481 EP - 492 VL - 66 IS - 2 PB - mathdoc UR - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0270-1/ DO - 10.1007/s10587-016-0270-1 LA - en ID - 10_1007_s10587_016_0270_1 ER -
%0 Journal Article %A de Filippis, Vincenzo %T Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings %J Czechoslovak Mathematical Journal %D 2016 %P 481-492 %V 66 %N 2 %I mathdoc %U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0270-1/ %R 10.1007/s10587-016-0270-1 %G en %F 10_1007_s10587_016_0270_1
de Filippis, Vincenzo. Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 481-492. doi : 10.1007/s10587-016-0270-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0270-1/
Cité par Sources :