Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings
Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 481-492.

Voir la notice de l'article dans Czech Digital Mathematics Library

Let $R$ be a prime ring of characteristic different from 2 and 3, $Q_r$ its right Martindale quotient ring, $C$ its extended centroid, $L$ a non-central Lie ideal of $R$ and $n\geq 1$ a fixed positive integer. Let $\alpha $ be an automorphism of the ring $R$. An additive map $D\colon R\to R$ is called an $\alpha $-derivation (or a skew derivation) on $R$ if $D(xy)=D(x)y+\alpha (x)D(y)$ for all $x,y\in R$. An additive mapping $F\colon R\to R$ is called a generalized $\alpha $-derivation (or a generalized skew derivation) on $R$ if there exists a skew derivation $D$ on $R$ such that $F(xy)=F(x)y+\alpha (x)D(y)$ for all $x,y\in R$. We prove that, if $F$ is a nonzero generalized skew derivation of $R$ such that $F(x)\* [F(x),x]^n = 0$ for any $x\in L$, then either there exists $\lambda \in C$ such that $F(x)=\lambda x$ for all $x\in R$, or $R\subseteq M_2(C)$ and there exist $a\in Q_r$ and $\lambda \in C$ such that $F(x)=ax+xa+\lambda x$ for any $x\in R$.
DOI : 10.1007/s10587-016-0270-1
Classification : 16N60, 16W25
Mots-clés : generalized skew derivation; Lie ideal; prime ring
@article{10_1007_s10587_016_0270_1,
     author = {de Filippis, Vincenzo},
     title = {Annihilating and power-commuting generalized skew derivations on {Lie} ideals in prime rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {481--492},
     publisher = {mathdoc},
     volume = {66},
     number = {2},
     year = {2016},
     doi = {10.1007/s10587-016-0270-1},
     mrnumber = {3519616},
     zbl = {06604481},
     language = {en},
     url = {https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0270-1/}
}
TY  - JOUR
AU  - de Filippis, Vincenzo
TI  - Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings
JO  - Czechoslovak Mathematical Journal
PY  - 2016
SP  - 481
EP  - 492
VL  - 66
IS  - 2
PB  - mathdoc
UR  - https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0270-1/
DO  - 10.1007/s10587-016-0270-1
LA  - en
ID  - 10_1007_s10587_016_0270_1
ER  - 
%0 Journal Article
%A de Filippis, Vincenzo
%T Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings
%J Czechoslovak Mathematical Journal
%D 2016
%P 481-492
%V 66
%N 2
%I mathdoc
%U https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0270-1/
%R 10.1007/s10587-016-0270-1
%G en
%F 10_1007_s10587_016_0270_1
de Filippis, Vincenzo. Annihilating and power-commuting generalized skew derivations on Lie ideals in prime rings. Czechoslovak Mathematical Journal, Tome 66 (2016) no. 2, pp. 481-492. doi : 10.1007/s10587-016-0270-1. https://geodesic-test.mathdoc.fr/articles/10.1007/s10587-016-0270-1/

Cité par Sources :